1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


Author(s):  
J. Prabu ◽  
J. Mahalakshmi ◽  
C. Durairajan ◽  
S. Santhakumar

In this paper, we have constructed some new codes from [Formula: see text]-Simplex code called unit [Formula: see text]-Simplex code. In particular, we find the parameters of these codes and have proved that it is a [Formula: see text] [Formula: see text]-linear code, where [Formula: see text] and [Formula: see text] is a smallest prime divisor of [Formula: see text]. When rank [Formula: see text] and [Formula: see text] is a prime power, we have given the weight distribution of unit [Formula: see text]-Simplex code. For the rank [Formula: see text] we obtain the partial weight distribution of unit [Formula: see text]-Simplex code when [Formula: see text] is a prime power. Further, we derive the weight distribution of unit [Formula: see text]-Simplex code for the rank [Formula: see text] [Formula: see text].


2017 ◽  
Vol 39 (4) ◽  
pp. 889-897 ◽  
Author(s):  
ZOLTÁN BUCZOLICH

We show that $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, the number of distinct prime factors of $n$ and the number of distinct prime factors of $n$ counted according to multiplicity, are good weighting functions for the pointwise ergodic theorem in $L^{1}$. That is, if $g$ denotes one of these functions and $S_{g,K}=\sum _{n\leq K}g(n)$, then for every ergodic dynamical system $(X,{\mathcal{A}},\unicode[STIX]{x1D707},\unicode[STIX]{x1D70F})$ and every $f\in L^{1}(X)$, $$\begin{eqnarray}\lim _{K\rightarrow \infty }\frac{1}{S_{g,K}}\mathop{\sum }_{n=1}^{K}g(n)f(\unicode[STIX]{x1D70F}^{n}x)=\int _{X}f\,d\unicode[STIX]{x1D707}\quad \text{for }\unicode[STIX]{x1D707}\text{ almost every }x\in X.\end{eqnarray}$$ This answers a question raised by Cuny and Weber, who showed this result for $L^{p}$, $p>1$.


1999 ◽  
Vol 22 (3) ◽  
pp. 655-658 ◽  
Author(s):  
Safwan Akbik

For a positive integern, letP(n)denotes the largest prime divisor ofnand define the set:𝒮(x)=𝒮={n≤x:n   does not divide   P(n)!}. Paul Erdös has proposed that|S|=o(x)asx→∞, where|S|is the number ofn∈S. This was proved by Ilias Kastanas. In this paper we will show the stronger result that|S|=O(xe−1/4logx).


Sign in / Sign up

Export Citation Format

Share Document