punctured codes
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
R. Asokan ◽  
T. Vijayakumar

Noise can scramble a message that is sent. This is true for both voicemails and digital communications transmitted to and from computer systems. During transmission, mistakes tend to happen. Computer memory is the most commonplace to use Hamming code error correction. With extra parity/redundancy bits added to Hamming code, single-bit errors may be detected and corrected. Short-distance data transmissions often make use of Hamming coding. The redundancy bits are interspersed and evacuated subsequently when scaling it for longer data lengths. The new hamming code approach may be quickly and easily adapted to any situation. As a result, it's ideal for sending large data bitstreams since the overhead bits per data bit ratio is much lower. The investigation in this article is extended Hamming codes for product codes. The proposal particularly emphasises on how well it functions with low error rate, which is critical for multimedia wireless applications. It provides a foundation and a comprehensive set of methods for quantitatively evaluating this performance without the need of time-consuming simulations. It provides fresh theoretical findings on the well-known approximation, where the bit error rate roughly equal to the frame error rate times the minimal distance to the codeword length ratio. Moreover, the analytical method is applied to actual design considerations such as shorter and punctured codes along with the payload and redundancy bits calculation. Using the extended identity equation on the dual codes, decoding can be done at the first instance. The achievement of 43.48% redundancy bits is obtained during the testing process which is a huge proportion reduced in this research work.


Author(s):  
J. Prabu ◽  
J. Mahalakshmi ◽  
C. Durairajan ◽  
S. Santhakumar

In this paper, we have constructed some new codes from [Formula: see text]-Simplex code called unit [Formula: see text]-Simplex code. In particular, we find the parameters of these codes and have proved that it is a [Formula: see text] [Formula: see text]-linear code, where [Formula: see text] and [Formula: see text] is a smallest prime divisor of [Formula: see text]. When rank [Formula: see text] and [Formula: see text] is a prime power, we have given the weight distribution of unit [Formula: see text]-Simplex code. For the rank [Formula: see text] we obtain the partial weight distribution of unit [Formula: see text]-Simplex code when [Formula: see text] is a prime power. Further, we derive the weight distribution of unit [Formula: see text]-Simplex code for the rank [Formula: see text] [Formula: see text].


Author(s):  
Rana A. Hassan ◽  
John P. Fonseka

Background: Low-density parity-check (LDPC) codes have received significant interest in a variety of communication systems due to their superior performance and reasonable decoding complexity. Methods: A novel collection of punctured codes decoding (CPCD) technique that considers a code as a collection of its punctured codes is proposed. Two forms of CPCD, serial CPCD that decodes each punctured code serially and parallel CPCD that decodes each punctured code in parallel, are discussed. Results: It is demonstrated that both serial and parallel CPCD have about the same decoding complexity compared with standard sum product algorithm (SPA) decoding. It is also demonstrated that while serial CPCD has about the same decoding delay compared with standard SPA decoding, parallel CPCD can decrease the decoding delay, however, at the expense of processing power. Conclusion: Numerical results demonstrate that CPCD can significantly improve the performance, or significantly increase the code rate of low-density parity-check (LDPC) codes.


Sign in / Sign up

Export Citation Format

Share Document