pointwise ergodic theorem
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
pp. 1-36
Author(s):  
ARIE LEVIT ◽  
ALEXANDER LUBOTZKY

Abstract We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.


2018 ◽  
Vol 40 (2) ◽  
pp. 418-436
Author(s):  
GUIXIANG HONG

In this paper, we establish a non-commutative analogue of Calderón’s transference principle, which allows us to deduce the non-commutative maximal ergodic inequalities from the special case—operator-valued maximal inequalities. As applications, we deduce the non-commutative Stein–Calderón maximal ergodic inequality and the dimension-free estimates of the non-commutative Wiener maximal ergodic inequality over Euclidean spaces. We also show the corresponding individual ergodic theorems. To show Wiener’s pointwise ergodic theorem, following a somewhat standard way we construct a dense subset on which pointwise convergence holds. To show Jones’ pointwise ergodic theorem, we use again the transference principle together with the Littlewood–Paley method, which is different from Jones’ original variational method that is still unavailable in the non-commutative setting.


2017 ◽  
Vol 39 (4) ◽  
pp. 889-897 ◽  
Author(s):  
ZOLTÁN BUCZOLICH

We show that $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, the number of distinct prime factors of $n$ and the number of distinct prime factors of $n$ counted according to multiplicity, are good weighting functions for the pointwise ergodic theorem in $L^{1}$. That is, if $g$ denotes one of these functions and $S_{g,K}=\sum _{n\leq K}g(n)$, then for every ergodic dynamical system $(X,{\mathcal{A}},\unicode[STIX]{x1D707},\unicode[STIX]{x1D70F})$ and every $f\in L^{1}(X)$, $$\begin{eqnarray}\lim _{K\rightarrow \infty }\frac{1}{S_{g,K}}\mathop{\sum }_{n=1}^{K}g(n)f(\unicode[STIX]{x1D70F}^{n}x)=\int _{X}f\,d\unicode[STIX]{x1D707}\quad \text{for }\unicode[STIX]{x1D707}\text{ almost every }x\in X.\end{eqnarray}$$ This answers a question raised by Cuny and Weber, who showed this result for $L^{p}$, $p>1$.


2015 ◽  
Vol 59 (3) ◽  
pp. 663-674
Author(s):  
Ben Krause ◽  
Pavel Zorin-Kranich

Author(s):  
Tanja Eisner ◽  
Bálint Farkas ◽  
Markus Haase ◽  
Rainer Nagel

Sign in / Sign up

Export Citation Format

Share Document