Discrete Free Energy Functionals for Elastic Materials with Phase Change

Author(s):  
Thomas Blesgen ◽  
Stephan Luckhaus ◽  
Luca Mugnai
2019 ◽  
Vol 17 (03) ◽  
pp. 393-423 ◽  
Author(s):  
J. A. Carrillo ◽  
M. G. Delgadino ◽  
F. S. Patacchini

We analyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the functional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these results are sharp for homogeneous functionals with entropies leading to degenerate diffusions while they are not sharp for fast diffusions. The particular relevant case of linear diffusion is totally clarified giving a sharp condition on the interaction potential under which the corresponding free energy functional has ground states or not.


Author(s):  
Peter C. Wayner

An overview of some of the theoretical models describing the effects of chemical potential, excess free energy, free energy gradient, film thickness profile, temperature profile, superheat, thermal conduction, concentration gradient, velocity profile, slip velocity, apparent contact angle, and kinetic theory on the phase change heat transfer processes in an evaporating meniscus are presented. The relative importance of the parameters is demonstrated. Experimental techniques and confirming experimental data are also presented. In essence, the microscopic thickness profile of the evaporating meniscus is measured optically to obtain the details of the liquid pressure field and modeled to give the fluid flow rate and the evaporative heat flux. The macroscopic temperature field of the substrate is measured and numerically modeled to give the microscopic temperature field and a complementary calculation of the evaporative heat flux. For closure, the values of the slip velocity and concentration change on evaporation need to be correctly assumed. The interfacial transport processes are very sensitive to small interfacial temperature and concentration changes, which are difficult, if not impossible, to measure directly. However, the liquid pressure gradients can be directly measured. The effects of the interacting phenomena on the phase change processes are demonstrated using these complementary experimental-modeling procedures. The processes are found to be very complex and simple modeling/experiments can only confirm the general phenomena and give insight.


2017 ◽  
Vol 146 (6) ◽  
pp. 064504 ◽  
Author(s):  
Mohammadhasan Dinpajooh ◽  
Marshall D. Newton ◽  
Dmitry V. Matyushov

Sign in / Sign up

Export Citation Format

Share Document