scholarly journals Constructing a Near-Minimal-Volume Computational Box for Molecular Dynamics Simulations with Periodic Boundary Conditions

Author(s):  
Henk Bekker ◽  
Jur P. van den Berg ◽  
Tsjerk A. Wassenaar
1988 ◽  
Vol 141 ◽  
Author(s):  
Laurent J. Lewis ◽  
Normand Mousseau ◽  
FranÇois Drolet

AbstractA new algorithm for generating fully-coordinated hydrogenated amorphous silicon models with periodic boundary conditions is presented. The hydrogen is incorporated into an a-Si matrix by a bond-switching process similar to that proposed by Wooten, Winer, and Weaire, making sure that four-fold coordination is preserved and that no rings with less than 5 members are created. After each addition of hydrogen, the structure is fully relaxed. The models so obtained, to be used as input to molecular dynamics simulations, are found to be in good agreement with experiment. A model with 12 at.% H is discussed in detail.


Author(s):  
Behrouz Arash ◽  
Quan Wang

Free vibration of single- and double-layered graphene sheets is investigated by employing nonlocal continuum theory and molecular dynamics simulations. Results show that the classical elastic model overestimated the resonant frequencies of the sheets by a percentage as high as 62%. The dependence of small-scale effects, sizes of sheets, boundary conditions, and number of layers on vibrational characteristic of single- and double-layered graphene sheets is studied. The resonant frequencies predicted by the nonlocal elastic plate theory are verified by the molecular dynamics simulations, and the nonlocal parameter is calibrated through the verification process. The simulation results reveal that the calibrated nonlocal parameter depends on boundary conditions and vibrational modes. The nonlocal plate model is found to be indispensable in vibration analysis of grapheme sheets with a length less than 8 nm on their sides.


Sign in / Sign up

Export Citation Format

Share Document