nonequilibrium molecular dynamics
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 87)

H-INDEX

56
(FIVE YEARS 7)

2022 ◽  
pp. 63-84
Author(s):  
Muhammad Asif Shakoori ◽  
Maogang He ◽  
Aamir Shahzad ◽  
Misbah Khan ◽  
Ying Zhang

The effects of external electric field (E) on the diffusion coefficient of dust particles in low-temperature dusty plasmas (LT-DPs) have been computed through nonequilibrium molecular dynamics (NEMD) simulations. The new simulation result was obtained by employing the integral formula of velocity autocorrelation functions (VACF) using the Green-Kubo relation. The normalized self-diffusion coefficient (D*) is investigated for different combinations of plasma coupling (Γ) and Debye screening (κ) parameters. The simulation outcome shows that the decreasing position of D* shifts toward Γ and also increased with the increase of κ. The D* linearly decreased with Γ and increased when applied external E increases. It is observed that the increasing trend of D* depends on the E strength. These investigations show that the present algorithm provides precise data with fast convergence and effects of κ, Γ, E. It is shown that the current NEMD techniques with applied external E can be employed to understand the microscopic mechanism of dusty plasmas.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract We have investigated the shock-induced plasticity and phase transition in the hexagonal columnar nanocrystalline (HCN) Mg by large-scale nonequilibrium molecular dynamics simulations (NEMD). The preexisting grain boundaries (GBs) induce the nucleation of the {10-12} twins for the local stress relaxation. The twins grow up in grains leading to the orientation rotation. The phase transition from the hexagonal close-packed (HCP) phase to the body-centered cubic (BCC) phase begins when the migrating twin grain boundaries (TGBs) meet in A- and C-type grains, and continues in the plastic deformation regions. The phase-transition pathway involves two steps: the reorientation and phase transformation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Hui Guo ◽  
Chunqing Huo ◽  
Liang Yang ◽  
Shiwei Lin

Graphitic carbon nitride (g-C3N4) nanotubes are recently gaining increasing interest due to their extraordinary physicochemical properties. In the following, we report on simulations using a method of nonequilibrium molecular dynamics and focus on the thermal conductivity variation of g-C3N4 nanotubes with respect to different temperatures, diameters, and chiral angles. In spite of the variation of diameters and chiral angles, the structure of nanotubes possesses high stability in the temperature range from 200 K to 600 K. Although there is little change of the thermal conductivity per unit arc length for nanotubes with the same diameter at different temperatures, it decreases significantly with increasing diameters at the same temperature. The thermal conductivity at different chiral angles has little to do with how temperature changes. Simulation results show that the vibrational density of states of nanotubes distributed, respectively, at ∼11 THz and ∼32 THz, indicating that heat in nanotubes is mostly carried by phonons with frequencies lower than 10 THz.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Carlos Ayestarán Latorre ◽  
Joseph E. Remias ◽  
Joshua D. Moore ◽  
Hugh A. Spikes ◽  
Daniele Dini ◽  
...  

AbstractThe molecular structure of lubricant additives controls not only their adsorption and dissociation behaviour at the nanoscale, but also their ability to reduce friction and wear at the macroscale. Here, we show using nonequilibrium molecular dynamics simulations with a reactive force field that tri(s-butyl)phosphate dissociates much faster than tri(n-butyl)phosphate when heated and compressed between sliding iron surfaces. For both molecules, dissociative chemisorption proceeds through cleavage of carbon−oxygen bonds. The dissociation rate increases exponentially with temperature and stress. When the rate−temperature−stress data are fitted with the Bell model, both molecules have similar activation energies and activation volumes and the higher reactivity of tri(s-butyl)phosphate is due to a larger pre-exponential factor. These observations are consistent with experiments using the antiwear additive zinc dialkyldithiophosphate. This study represents a crucial step towards the virtual screening of lubricant additives with different substituents to optimise tribological performance.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4001
Author(s):  
Ahmad Moghimikheirabadi ◽  
Argyrios V. Karatrantos ◽  
Martin Kröger

We explore the behavior of coarse-grained ionic polymer nanocomposites (IPNCs) under uniaxial extension up to 800% strain by means of nonequilibrium molecular dynamics simulations. We observe a simultaneous increase of stiffness and toughness of the IPNCs upon increasing the engineering strain rate, in agreement with experimental observations. We reveal that the excellent toughness of the IPNCs originates from the electrostatic interaction between polymers and nanoparticles, and that it is not due to the mobility of the nanoparticles or the presence of polymer–polymer entanglements. During the extension, and depending on the nanoparticle volume fraction, polymer–nanoparticle ionic crosslinks are suppressed with the increase of strain rate and electrostatic strength, while the mean pore radius increases with strain rate and is altered by the nanoparticle volume fraction and electrostatic strength. At relatively low strain rates, IPNCs containing an entangled matrix exhibit self-strengthening behavior. We provide microscopic insight into the structural, conformational properties and crosslinks of IPNCs, also referred to as polymer nanocomposite electrolytes, accompanying their unusual mechanical behavior.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Shuo Zhang ◽  
Yanyu Zhang ◽  
Xiaofei Sun

Abstract CO2 injection enhanced oil recovery has become one of the most important approaches to develop heavy oil from reservoirs. However, the microscopic displacement behavior of heavy oil in the nanochannel is still not fully understood. In this paper, we use CO2 as the displacing agent to investigate the displacement of heavy oil molecules confined between the hydroxylated silica nanochannel by nonequilibrium molecular dynamics simulations. We find that for heavy oil molecules, it requires more much higher displacing speed to fully dissipate the residual oil which is found related to the decreased CO2 adsorption on the silica nanochannel. A faster CO2 gas injection rate will lower the CO2 adsorption inside the nanochannel, and more CO2 will participate in the displacement of the heavy oil. The results from this work will enhance our understanding of the CO2 gas displacing heavy oil recovery and design guidelines for heavy oil recovery applications.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1464
Author(s):  
Xuan Zheng ◽  
Lihong Su ◽  
Guanyu Deng ◽  
Jie Zhang ◽  
Hongtao Zhu ◽  
...  

Lubricant has been widely applied to reduce wear and friction between the contact surfaces when they are in relative motion. In the current study, a nonequilibrium molecular dynamics (NEMD) simulation was specifically established to conduct a comprehensive investigation on the dynamic contact between two iron surfaces in a boundary friction system considering the mixed C4-alkane and nanoparticles as lubricant. The main research objective was to explore the effects of fluid and nanoparticles addition on the surface contact and friction force. It was found that nanoparticles acted like ball bearings between the contact surfaces, leading to a change of sliding friction mode to rolling friction mode. Under normal loads, plastic deformation occurred at the top surface because nanoparticles were mainly supporting the normal load. By increasing the number of C4-alkane molecules between two contact surfaces, the contact condition has been changed from partial to full lubrication. In addition, an attractive force from the solid–liquid LJ interaction between C4-alkane and surfaces was observed at the early stage of sliding, due to the large space formed by wall surfaces and nanoparticles. The findings in this paper would be beneficial for understanding the frictional behavior of a simple lubricant with or without nanoparticles addition in a small confinement.


Sign in / Sign up

Export Citation Format

Share Document