scholarly journals Efficient Concurrent Zero-Knowledge in the Auxiliary String Model

Author(s):  
Ivan Damgård
Keyword(s):  
2009 ◽  
Vol 410 (11) ◽  
pp. 1099-1108 ◽  
Author(s):  
Andrew C.C. Yao ◽  
Frances F. Yao ◽  
Yunlei Zhao

2004 ◽  
Vol 11 (9) ◽  
Author(s):  
Ivan B. Damgård ◽  
Serge Fehr ◽  
Louis Salvail

The concept of zero-knowledge (ZK) has become of fundamental importance in cryptography. However, in a setting where entities are modeled by quantum computers, classical arguments for proving ZK fail to hold since, in the quantum setting, the concept of rewinding is not generally applicable. Moreover, known classical techniques that avoid rewinding have various shortcomings in the quantum setting.<br /> <br />We propose new techniques for building <em>quantum</em> zero-knowledge (QZK) protocols, which remain secure even under (active) quantum attacks. We obtain computational QZK proofs and perfect QZK arguments for any NP language in the common reference string model. This is based on a general method converting an important class of classical honest-verifier ZK (HVZK) proofs into QZK proofs. This leads to quite practical protocols if the underlying HVZK proof is efficient. These are the first proof protocols enjoying these properties, in particular the first to achieve perfect QZK.<br /> <br />As part of our construction, we propose a general framework for building unconditionally hiding (trapdoor) string commitment schemes, secure against quantum attacks, as well as concrete instantiations based on specific (believed to be) hard problems. This is of independent interest, as these are the first unconditionally hiding string commitment schemes withstanding quantum attacks.<br /> <br />Finally, we give a partial answer to the question whether QZK is possible in the plain model. We propose a new notion of QZK, <em>non-oblivious verifier</em> QZK, which is strictly stronger than honest-verifier QZK but weaker than full QZK, and we show that this notion can be achieved by means of efficient (quantum) protocols.


2021 ◽  
Vol 29 (2) ◽  
pp. 229-271
Author(s):  
Panagiotis Grontas ◽  
Aris Pagourtzis ◽  
Alexandros Zacharakis ◽  
Bingsheng Zhang

This work formalizes Publicly Auditable Conditional Blind Signatures (PACBS), a new cryptographic primitive that allows the verifiable issuance of blind signatures, the validity of which is contingent upon a predicate and decided by a designated verifier. In particular, when a user requests the signing of a message, blinded to protect her privacy, the signer embeds data in the signature that makes it valid if and only if a condition holds. A verifier, identified by a private key, can check the signature and learn the value of the predicate. Auditability mechanisms in the form of non-interactive zero-knowledge proofs are provided, so that a cheating signer cannot issue arbitrary signatures and a cheating verifier cannot ignore the embedded condition. The security properties of this new primitive are defined using cryptographic games. A proof-of-concept construction, based on the Okamoto–Schnorr blind signatures infused with a plaintext equivalence test is presented and its security is analyzed.


Sign in / Sign up

Export Citation Format

Share Document