security properties
Recently Published Documents


TOTAL DOCUMENTS

432
(FIVE YEARS 126)

H-INDEX

27
(FIVE YEARS 5)

2023 ◽  
Vol 55 (1) ◽  
pp. 1-35
Author(s):  
Deqiang Li ◽  
Qianmu Li ◽  
Yanfang (Fanny) Ye ◽  
Shouhuai Xu

Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-35
Author(s):  
René Mayrhofer ◽  
Stephan Sigg

Mobile device authentication has been a highly active research topic for over 10 years, with a vast range of methods proposed and analyzed. In related areas, such as secure channel protocols, remote authentication, or desktop user authentication, strong, systematic, and increasingly formal threat models have been established and are used to qualitatively compare different methods. However, the analysis of mobile device authentication is often based on weak adversary models, suggesting overly optimistic results on their respective security. In this article, we introduce a new classification of adversaries to better analyze and compare mobile device authentication methods. We apply this classification to a systematic literature survey. The survey shows that security is still an afterthought and that most proposed protocols lack a comprehensive security analysis. The proposed classification of adversaries provides a strong and practical adversary model that offers a comparable and transparent classification of security properties in mobile device authentication.


2022 ◽  
Vol 54 (7) ◽  
pp. 1-34
Author(s):  
Sophie Dramé-Maigné ◽  
Maryline Laurent ◽  
Laurent Castillo ◽  
Hervé Ganem

The Internet of Things is taking hold in our everyday life. Regrettably, the security of IoT devices is often being overlooked. Among the vast array of security issues plaguing the emerging IoT, we decide to focus on access control, as privacy, trust, and other security properties cannot be achieved without controlled access. This article classifies IoT access control solutions from the literature according to their architecture (e.g., centralized, hierarchical, federated, distributed) and examines the suitability of each one for access control purposes. Our analysis concludes that important properties such as auditability and revocation are missing from many proposals while hierarchical and federated architectures are neglected by the community. Finally, we provide an architecture-based taxonomy and future research directions: a focus on hybrid architectures, usability, flexibility, privacy, and revocation schemes in serverless authorization.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012042
Author(s):  
H Rekha ◽  
M. Siddappa

Abstract It is very difficult to develop a perfect security protocol for communication over the IoT network and developing a reliable authentication protocol requires a detailed understanding of cryptography. To ensure the reliability of security protocols of IoT, the validation method is not a good choice because of its several disadvantages and limitations. To prove the high reliability of Cryptographic Security Protocols(CSP) for IoT networks, the functional correctness of security protocols must be proved secure mathematically. Using the Formal Verification technique we can prove the functional correctness of IoT security protocols by providing the proofs mathematically. In this work, The CoAP Machine to Machine authentication protocol and centralied IoT network Authentication Protocol RADIUS is formally verified using the well-known verification technique known as model checking technique and we have used the Scyther model checker for the verification of security properties of the respective protocols. The abstract protocol models of the IoT authentication protocols were specified in the security protocol description language and the security requirements of the authentication protocols were specified as claim events.


Cryptography ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Jongkil Kim ◽  
Yang-Wai Chow ◽  
Willy Susilo ◽  
Joonsang Baek ◽  
Intae Kim

We propose a new functional encryption for pattern matching scheme with a hidden string. In functional encryption for pattern matching (FEPM), access to a message is controlled by its description and a private key that is used to evaluate the description for decryption. In particular, the description with which the ciphertext is associated is an arbitrary string w and the ciphertext can only be decrypted if its description matches the predicate of a private key which is also a string. Therefore, it provides fine-grained access control through pattern matching alone. Unlike related schemes in the literature, our scheme hides the description that the ciphertext is associated with. In many practical scenarios, the description of the ciphertext cannot be public information as an attacker may abuse the message description to identify the data owner or classify the target ciphertext before decrypting it. Moreover, some data owners may not agree to reveal any ciphertext information since it simply gives greater advantage to the adversary. In this paper, we introduce the first FEPM scheme with a hidden string, such that the adversary cannot get any information about the ciphertext from its description. The security of our scheme is formally analyzed. The proposed scheme provides both confidentiality and anonymity while maintaining its expressiveness. We prove these security properties under the interactive general Diffie–Hellman assumption (i-GDH) and a static assumption introduced in this paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zi-An Zhao ◽  
Yu Sun ◽  
Dawei Li ◽  
Jian Cui ◽  
Zhenyu Guan ◽  
...  

Intravehicular communication relies on controller area network (CAN) protocol to deliver messages and instructions among different electronic control units (ECU). Unfortunately, inherent defects in CAN include the absence of confidentiality and integrity mechanism, enabling adversaries to launch attacks from wired or wireless interfaces. Although various CAN cryptographic protocols have been proposed for entity authentication and secure communication, the redundancy in the key establishment phase weakens their availability in large-scale CAN. In this paper, we propose a scalable security protocol suite for intravehicular networks and reduce the communication costs significantly. A new type of attack, suspension attack, is identified for the existing protocols and mitigated in our protocol by leveraging a global counter scheme. We formally verify the security properties of the proposed protocol suite through the AVISPA tool. The simulation results indicate that the communication and computation efficiency are improved in our protocol.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 32
Author(s):  
Tong Liu ◽  
Fariza Sabrina ◽  
Julian Jang-Jaccard ◽  
Wen Xu ◽  
Yuanyuan Wei

A smart public transport system is expected to be an integral part of our human lives to improve our mobility and reduce the effect of our carbon footprint. The safety and ongoing maintenance of the smart public transport system from cyberattacks are vitally important. To provide more comprehensive protection against potential cyberattacks, we propose a novel approach that combines blockchain technology and a deep learning method that can better protect the smart public transport system. By the creation of signed and verified blockchain blocks and chaining of hashed blocks, the blockchain in our proposal can withstand unauthorized integrity attack that tries to forge sensitive transport maintenance data and transactions associated with it. A hybrid deep learning-based method, which combines autoencoder (AE) and multi-layer perceptron (MLP), in our proposal can effectively detect distributed denial of service (DDoS) attempts that can halt or block the urgent and critical exchange of transport maintenance data across the stakeholders. The experimental results of the hybrid deep learning evaluated on three different datasets (i.e., CICDDoS2019, CIC-IDS2017, and BoT-IoT) show that our deep learning model is effective to detect a wide range of DDoS attacks achieving more than 95% F1-score across all three datasets in average. The comparison of our approach with other similar methods confirms that our approach covers a more comprehensive range of security properties for the smart public transport system.


2021 ◽  
Author(s):  
◽  
Benjamin Philip Palmer

<p>An increasing number of products are exclusively digital items, such as media files, licenses, services, or subscriptions. In many cases customers do not purchase these items directly from the originator of the product but through a reseller instead. Examples of some well known resellers include GoDaddy, the iTunes music store, and Amazon. This thesis considers the concept of provenance of digital items in reseller chains. Provenance is defined as the origin and ownership history of an item. In the context of digital items, the origin of the item refers to the supplier that created it and the ownership history establishes a chain of ownership from the supplier to the customer. While customers and suppliers are concerned with the provenance of the digital items, resellers will not want the details of the transactions they have taken part in made public. Resellers will require the provenance information to be anonymous and unlinkable to prevent third parties building up large amounts of information on the transactions of resellers. This thesis develops security mechanisms that provide customers and suppliers with assurances about the provenance of a digital item, even when the reseller is untrusted, while providing anonymity and unlinkability for resellers . The main contribution of this thesis is the design, development, and analysis of the tagged transaction protocol. A formal description of the problem and the security properties for anonymously providing provenance for digital items in reseller chains are defined. A thorough security analysis using proofs by contradiction shows the protocol fulfils the security requirements. This security analysis is supported by modelling the protocol and security requirements using Communicating Sequential Processes (CSP) and the Failures Divergences Refinement (FDR) model checker. An extended version of the tagged transaction protocol is also presented that provides revocable anonymity for resellers that try to conduct a cloning attack on the protocol. As well as an analysis of the security of the tagged transaction protocol, a performance analysis is conducted providing complexity results as well as empirical results from an implementation of the protocol.</p>


2021 ◽  
Author(s):  
Jiawen Song ◽  
Meihua Xiao ◽  
Tong Zhang ◽  
Haoyang Zhou

AbstractPUF (Physical unclonable function) is a new hardware security primitive, and the research on PUFs is one of the emerging research focuses. For PUF-based mutual authentication protocols, a method to abstract the security properties of hardware by using logic of events is proposed, and the application aspects of logic of events are extended to protocols based on hardware security. With the interaction of PUF-based mutual authentication protocol formally described by logic of events, the basic sequences are constructed and the strong authentication property in protocol interaction process is verified. Based on the logic of events, the freshness of nonces is defined, and the persist rule is proposed according to the concept of freshness, which ensures the consistency of the protocol state and behavior predicate in the proof process, and reduces the complexity and redundancy in the protocol analysis process. Under reasonable assumptions, the security of the protocol is proven, and the fact that logic of events applies to PUF-based mutual authentication protocols is shown.


2021 ◽  
Author(s):  
◽  
Benjamin Philip Palmer

<p>An increasing number of products are exclusively digital items, such as media files, licenses, services, or subscriptions. In many cases customers do not purchase these items directly from the originator of the product but through a reseller instead. Examples of some well known resellers include GoDaddy, the iTunes music store, and Amazon. This thesis considers the concept of provenance of digital items in reseller chains. Provenance is defined as the origin and ownership history of an item. In the context of digital items, the origin of the item refers to the supplier that created it and the ownership history establishes a chain of ownership from the supplier to the customer. While customers and suppliers are concerned with the provenance of the digital items, resellers will not want the details of the transactions they have taken part in made public. Resellers will require the provenance information to be anonymous and unlinkable to prevent third parties building up large amounts of information on the transactions of resellers. This thesis develops security mechanisms that provide customers and suppliers with assurances about the provenance of a digital item, even when the reseller is untrusted, while providing anonymity and unlinkability for resellers . The main contribution of this thesis is the design, development, and analysis of the tagged transaction protocol. A formal description of the problem and the security properties for anonymously providing provenance for digital items in reseller chains are defined. A thorough security analysis using proofs by contradiction shows the protocol fulfils the security requirements. This security analysis is supported by modelling the protocol and security requirements using Communicating Sequential Processes (CSP) and the Failures Divergences Refinement (FDR) model checker. An extended version of the tagged transaction protocol is also presented that provides revocable anonymity for resellers that try to conduct a cloning attack on the protocol. As well as an analysis of the security of the tagged transaction protocol, a performance analysis is conducted providing complexity results as well as empirical results from an implementation of the protocol.</p>


Sign in / Sign up

Export Citation Format

Share Document