Unification theory

Author(s):  
Franz Baader
Keyword(s):  



Mind ◽  
2019 ◽  
Vol 129 (514) ◽  
pp. 535-562
Author(s):  
Sam Baron

Abstract Mathematics appears to play a genuine explanatory role in science. But how do mathematical explanations work? Recently, a counterfactual approach to mathematical explanation has been suggested. I argue that such a view fails to differentiate the explanatory uses of mathematics within science from the non-explanatory uses. I go on to offer a solution to this problem by combining elements of the counterfactual theory of explanation with elements of a unification theory of explanation. The result is a theory according to which a counterfactual is explanatory when it is an instance of a generalized counterfactual scheme.





2005 ◽  
Vol 14 (07) ◽  
pp. 1195-1231 ◽  
Author(s):  
FRANCESCO CIANFRANI ◽  
ANDREA MARROCCO ◽  
GIOVANNI MONTANI

We present a geometrical unification theory in a Kaluza–Klein approach that achieve the geometrization of a generic gauge theory bosonic component. We show how it is possible to derive gauge charge conservation from the invariance of the model under extra-dimensional translations and to geometrize gauge connections for spinors, in order to make possible to introducing matter just through free spinorial fields. Then we present the applications to (i) a pentadimensional manifold V4 ⊗ S1 so reproducing the original Kaluza–Klein theory with some extensions related to the rule of the scalar field contained in the metric and to the introduction of matter through spinors with a phase dependance from the fifth coordinate, (ii) a seven-dimensional manifold V4 ⊗ S1 ⊗ S2, in which we geometrize the electroweak model by introducing two spinors for every leptonic family and quark generation and a scalar field with two components with opposite hypercharge responsible for spontaneous symmetry breaking.



Sign in / Sign up

Export Citation Format

Share Document