Application of the etla approach in the comoving frame to the study of winds in hot stars

Author(s):  
M. Perinotto ◽  
C. Catala
Keyword(s):  
2009 ◽  
Vol 5 (S266) ◽  
pp. 539-539
Author(s):  
Gladys Solivella ◽  
Edgard Giorg ◽  
Rubén Vázquez ◽  
Giovanni Carraro

AbstractNGC 4852 is a moderately compact cluster centered at α2000 = 13 : 00 : 09; δ = −59 : 36 : 48, located near the center of an Hα superring. This cluster forms part of an extended region including young stellar aggregates inside a circle with a radius of 3 degrees, where many show an abundance of emission line stars. In the field of this cluster, two stars of known type exist: Wray 15–1039 (emission-line object) and CD −58:4845 (emission-line star). We do not yet know whether the Be phase is transient or whether it is just what randomly happens in some hot stars. It appears that Be star may be found even in clusters as old as 70 Myr with a high occurrence rate in clusters of 25–27 Myr old. A recent photometric survey in NGC 4852 down to V = 22 – 23 mag established that NGC 4852 is about 200 – 250 Myr old, located at 1.1 kpc from the Sun and with a mean E(B − V) = 0.45 mag. Since the presence of potential Be-type stars in the cluster area suggests it may be a very young object instead of moderately old, we decided to carry out spectroscopy for 33 selected stars and CCD UBVI photometry for the bright objects in the cluster area. This way, we attempt to clarify their evolutionary state and include them in the framework of emission-line stars and open clusters. From our analysis, we agree with the cluster distance and reddening determined by earlier studies, but we derive that the age of NGC 4852 is younger than 40 Myr.


2008 ◽  
Vol 4 (S259) ◽  
pp. 423-424
Author(s):  
Asif ud-Doula ◽  
Stanley P. Owocki ◽  
Richard H.D. Townsend

AbstractWe examine the angular momentum loss and associated rotational spin-down for magnetic hot stars with a line-driven stellar wind and a rotation-aligned dipole magnetic field. Our analysis here is based on our previous 2-D numerical MHD simulation study that examines the interplay among wind, field, and rotation as a function of two dimensionless parameters, W(=Vrot/Vorb) and ‘wind magnetic confinement’, η∗ defined below. We compare and contrast the 2-D, time variable angular momentum loss of this dipole model of a hot-star wind with the classical 1-D steady-state analysis by Weber and Davis (WD), who used an idealized monopole field to model the angular momentum loss in the solar wind. Despite the differences, we find that the total angular momentum loss averaged over both solid angle and time follows closely the general WD scaling ~ ṀΩR2A. The key distinction is that for a dipole field Alfvèn radius RA is significantly smaller than for the monopole field WD used in their analyses. This leads to a slower stellar spin-down for the dipole field with typical spin-down times of order 1 Myr for several known magnetic massive stars.


2014 ◽  
Vol 9 (S307) ◽  
pp. 291-292
Author(s):  
A. Domiciano de Souza ◽  
M. Borges Fernandes ◽  
A. C. Carciofi ◽  
O. Chesneau

AbstractThe research of stars with the B[e] phenomenon is still in its infancy, with several unanswered questions. Physically realistic models that treat the formation and evolution of their complex circumstellar environments are rare. The code HDUST (developed by A. C. Carciofi and J. Bjorkman) is one of the few existing codes that provides a self-consistent treatment of the radiative transfer in a gaseous and dusty circumstellar environment seen around B[e] supergiant stars. In this work we used the HDUST code to study the circumstellar medium of the binary system GG Car, where the primary component is probably an evolved B[e] supergiant. This system also presents a disk (probably circumbinary), which is responsible for the molecular and dusty signatures seen in GG Car spectra. We obtained VLTI/MIDI data on GG~Car at eight baselines, which allowed to spatially resolve the gaseous and dusty circumstellar environment. From the interferometric visibilities and SED modeling with HDUST, we confirm the presence of a compact ring, where the hot dust lies. We also show that large grains can reproduce the lack of structure in the SED and visibilities across the silicate band. We conclude the dust condensation site is much closer to the star than previously thought. This result provides stringent constraints on future theories of grain formation and growth around hot stars.


2021 ◽  
Vol 61 (7) ◽  
pp. 923-927
Author(s):  
A. F. Kholtygin ◽  
A. V. Moiseeva ◽  
I. A. Yakunin ◽  
O. A. Tsiopa ◽  
N. P. Ikonnikova ◽  
...  
Keyword(s):  

Author(s):  
Sabine Moehler ◽  
Ulrich Heber ◽  
Klaas S. de Boer
Keyword(s):  

Author(s):  
E. Zari ◽  
H.-W. Rix ◽  
N. Frankel ◽  
M. Xiang ◽  
E. Poggio ◽  
...  
Keyword(s):  

1998 ◽  
Vol 116 (2) ◽  
pp. 789-800 ◽  
Author(s):  
Wayne Landsman ◽  
Ralph C. Bohlin ◽  
Susan G. Neff ◽  
Robert W. O'Connell ◽  
Morton S. Roberts ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document