massive stars
Recently Published Documents


TOTAL DOCUMENTS

2214
(FIVE YEARS 67)

H-INDEX

108
(FIVE YEARS 1)

Author(s):  
Jia Yin ◽  
Zhiwei Chen ◽  
Yong-Qiang Yao ◽  
Jian Chen ◽  
Bin Li ◽  
...  

Abstract Early-B stars, much less energetic than O stars, may create an HII region that appears as radio-quiet. We report the identification of new early-B stars associated with the radio-quiet HII region G014.645--00.606 in the M17 complex. The ratio-quiet HII region G014.645--00.606 is adjacent to three radio-quiet WISE HII region candidates \citep{2014ApJS..212....1A}. The ionizing sources of the radio-quiet HII regions are expected to later than B1V, given the sensitivity about 1-2 mJy of the MAGPIS 20 cm survey. The stars were first selected if their parallaxes of GAIA EDR3 match that of the 22 GHz H2O maser source within the same region. We used the color-magnitude diagram made from the ZTF photometric catalog to select the candidates for massive stars because the intrinsic g-r colors of massive stars change little from B-type to O-type stars. Five stars lie in the areas of the color-magnitude diagram where either reddened massive stars or evolved post-main sequence stars of lower masses are commonly found. Three of the five stars, sources 1, 2, and 3, are located at the cavities of the three IR bubbles, and extended Hα emission is detected around the three IR bubbles. We suggest that sources 1, 2, and 3 are candidates for early-B stars associated with the radio-quiet region G014.645--00.606. Particularly, source 1 is an EW type eclipsing binary with a short period of 0.825 day, while source 2 is an EA type eclipsing binary with a short period of 0.919 day. The physical parameters of the two binary systems have been derived through the PHOEBE model. Source 1 is a twin binary of two stars with Teff ≈ 23,500 K, and source 2 contains a hotter component (Teff≈20,100 K) and a cooler one (Teff≈15,500 K). The O-C values of source 1 show a trend of decline, implying that the period of source is deceasing. Source 1 is likely a contacting early-B twin binary, for which mass transfer might cause its orbit to shrink.



2022 ◽  
Vol 924 (1) ◽  
pp. L15
Author(s):  
C. E. Fields

Abstract I report on the three-dimensional (3D) hydrodynamic evolution of a rapidly rotating 16 M ⊙ star to iron core collapse. For the first time, I follow the 3D evolution of the angular momentum (AM) distribution in the iron core and convective shell burning regions for the final 10 minutes up to and including gravitational instability and core collapse. In 3D, convective regions show efficient AM transport that leads to an AM profile that differs in shape and magnitude from MESA within a few shell convective turnover timescales. For different progenitor models, such as those with tightly coupled Si/O convective shells, efficient AM transport in 3D simulations could lead to a significantly different AM distribution in the stellar interior affecting estimates of the natal neutron star or black hole spin. The results suggest that 3D AM transport in convective and rotating shell burning regions are critical components in models of massive stars and could qualitatively alter the explosion outcome and inferred compact remnant properties.



2022 ◽  
Vol 924 (2) ◽  
pp. 70
Author(s):  
Brenna Mockler ◽  
Angela A. Twum ◽  
Katie Auchettl ◽  
Sierra Dodd ◽  
K. D. French ◽  
...  

Abstract Tidal disruption events (TDEs) provide a unique opportunity to probe the stellar populations around supermassive black holes (SMBHs). By combining light-curve modeling with spectral line information and knowledge about the stellar populations in the host galaxies, we are able to constrain the properties of the disrupted star for three TDEs. The TDEs in our sample have UV spectra, and measurements of the UV N iii to C iii line ratios enabled estimates of the nitrogen-to-carbon abundance ratios for these events. We show that the measured nitrogen line widths are consistent with originating from the disrupted stellar material dispersed by the central SMBH. We find that these nitrogen-to-carbon abundance ratios necessitate the disruption of moderately massive stars (≳1–2 M ⊙). We determine that these moderately massive disruptions are overrepresented by a factor of ≳102 when compared to the overall stellar population of the post-starburst galaxy hosts. This implies that SMBHs are preferentially disrupting higher mass stars, possibly due to ongoing top-heavy star formation in nuclear star clusters or to dynamical mechanisms that preferentially transport higher mass stars to their tidal radii.



2021 ◽  
Vol 14 (1) ◽  
pp. 237-250
Author(s):  
L. Garba ◽  
E. A. Chidi ◽  
F.S. Koki

Thermonuclear conditions found in explosive massive-stars requirethe use of not only efficient, accurate but thermodynamically consistent stellar equation of state (EOS) routines.The use of tables to describe EoS involved in stellar models is very much needed in understanding the final fate of massive stars. Many massive-low metallicity stars end their life as pair creation supernova (PCSN) through the creation of electron-positron pairs.We used thermodynamically consistent EoS tables to numerically evaluate the thermonuclear effects of the electron electron-positron pair creation in rotating 150 and 200 Massive starsat SMC and rotating and non-rotating 500 M⊙at LMC.As expected, the effect of rotationofreducing the oxygen core masshad increasedthe thermal energy within the threshold of the pair-creation instability.Similarly, lower mass loss stars with SMC model produced higher thermal energies,which can cmpletely explode the stars as PCSNe without remnant.On the other hand, the non-rotating 500 M⊙ might have only reached the instability region due to its lower metallicity (compared to solar metallicity) that iscapable of suppressing the mass loss such that the thermonuclear energy maintains certain amount of elements into the pair creation region. At the final explosion of the stars, the helium core mass educed the thermal energies in trying to avoid the pair-creation region. Many implications of these results for the evolution and explosion of massive stars are discussed.



2021 ◽  
Author(s):  
Gor Oganesyan ◽  
Sergey Karpov ◽  
Martin Jelinek ◽  
Gregory Beskin ◽  
Samuele Ronchini ◽  
...  

Abstract Long gamma-ray bursts (GRBs) are produced by the dissipation of ultra-relativistic jets launched by newly-born black holes after the collapse of massive stars. Right after the luminous and highly variable gamma-ray emission, the multi-wavelength afterglow is released by the external dissipation of the jet in circumburst medium. We report the discovery of a very bright (10 mag) optical emission 28 s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937. Early multi-filter observations allowed us to witness the end of the shock wave propagation into the GRB ejecta. We observed the spectral transition from a bright reverse to the forward shock emission, demonstrating that the early and late GRB multi-wavelength emission is originated from a very narrow jet propagating into an unusually rarefied interstellar medium. We also find evidence of an additional component of radiation, coming from the jet wings which is able explain the uncorrelated optical/X-ray emission.



2021 ◽  
Vol 68 (1 Jan-Feb) ◽  
Author(s):  
Lurwan Garba ◽  
Firas A. Ahmed

The adiabatic effects of electron-positron pair-production on the dynamical instability of very-massive stars is investigated from stellar progenitors of carbon-oxygen cores within the range of 64 M < MCO < 133 M  both with and without rotation. At a very high temperature and relatively low density; the production of electron-positron pairs in the centres of massive stars leads the adiabatic index to below 4/3. The adiabatic quantities are evaluated by constructing a model into a thermodynamically consistent electron-positron equation of state (EoS) table. It is observed that the adiabatic indices in the instability regions of the rotating models are fundamentally positive with central temperature and density. Similarly, the mass of the oxygen core within the instability region has accelerated the adiabatic indices in order to compress the star, while the mass loss and adiabatic index in the non-rotating model exponentially decay. In the rotating models, a small amount of heat is required to increase the central temperature for the end fate of the massive stars. The dynamic of most of the adiabatic quantities show a similar pattern for all the rotating models. The non-rotating model may not be suitable for inducing the instability. Many adiabatic quantities have shown great effects on the dynamical instability of the massive stars due to electron-positron pair-production in their centres. The results of this work would be useful for better understanding of the end fate of very-massive stars.





Nature ◽  
2021 ◽  
Vol 600 (7888) ◽  
pp. 227-228
Author(s):  
Kaitlin Kratter
Keyword(s):  


Author(s):  
A. Rainot ◽  
M. Reggiani ◽  
H. Sana ◽  
J. Bodensteiner ◽  
O. Absil


2021 ◽  
Vol 923 (2) ◽  
pp. 214
Author(s):  
R. Farmer ◽  
E. Laplace ◽  
S. E. de Mink ◽  
S. Justham

Abstract The cosmic origin of carbon, a fundamental building block of life, is still uncertain. Yield predictions for massive stars are almost exclusively based on single-star models, even though a large fraction interact with a binary companion. Using the MESA stellar evolution code, we predict the amount of carbon ejected in the winds and supernovae of single and binary-stripped stars at solar metallicity. We find that binary-stripped stars are twice as efficient at producing carbon (1.5–2.6 times, depending on choices regarding the slope of the initial mass function and black hole formation). We confirm that this is because the convective helium core recedes in stars that have lost their hydrogen envelope, as noted previously. The shrinking of the core disconnects the outermost carbon-rich layers created during the early phase of helium burning from the more central burning regions. The same effect prevents carbon destruction, even when the supernova shock wave passes. The yields are sensitive to the treatment of mixing at convective boundaries, specifically during carbon-shell burning (variations up to 40%), and improving upon this should be a central priority for more reliable yield predictions. The yields are robust (variations less than 0.5%) across our range of explosion assumptions. Black hole formation assumptions are also important, implying that the stellar graveyard now explored by gravitational-wave detections may yield clues to better understand the cosmic carbon production. Our findings also highlight the importance of accounting for binary-stripped stars in chemical yield predictions and motivates further studies of other products of binary interactions.



Sign in / Sign up

Export Citation Format

Share Document