EAS Publications Series
Latest Publications


TOTAL DOCUMENTS

2669
(FIVE YEARS 0)

H-INDEX

20
(FIVE YEARS 0)

Published By Edp Sciences

1638-1963, 1633-4760

2019 ◽  
Vol 82 ◽  
pp. 153-165
Author(s):  
M. Rieutord

We discuss the possible contraints that are brought about by a fluid mechanical analysis of the overshooting phenomenon at the interface of convective cores and radiative envelopes of early-type stars. We investigate an improvement of Roxburgh’s criterion by taking into account the viscous dissipation but show that this criterion remains not stringent enough to be predictive. We then discuss the thickness of the overshooting layer and show that all estimates, including the one of Zahn (1991), lead to a very thin mixing layer typically less than a percent of the pressure scale height.


2019 ◽  
Vol 82 ◽  
pp. 373-382
Author(s):  
L. Korre ◽  
N. Brummell ◽  
P. Garaud

In this paper, we investigate the dynamics of convection in a spherical shell under the Boussinesq approximation but considering the compressibility which arises from a non zero adiabatic temperature gradient, a relevant quantity for gaseous objects such as stellar or planetary interiors. We find that depth-dependent superiadiabaticity, combined with the use of mixed boundary conditions (fixed flux/fixed temperature), gives rise to unexpected dynamics that were not previously reported.


2019 ◽  
Vol 82 ◽  
pp. 391-413 ◽  
Author(s):  
S. Fromang ◽  
G. Lesur

The radial transport of angular momentum in accretion disk is a fundamental process in the universe. It governs the dynamical evolution of accretion disks and has implications for various issues ranging from the formation of planets to the growth of supermassive black holes. While the importance of magnetic fields for this problem has long been demonstrated, the existence of a source of transport solely hydrodynamical in nature has proven more difficult to establish and to quantify. In recent years, a combination of results coming from experiments, theoretical work and numerical simulations has dramatically improved our understanding of hydrodynamically mediated angular momentum transport in accretion disk. Here, based on these recent developments, we review the hydrodynamical processes that might contribute to transporting angular momentum radially in accretion disks and highlight the many questions that are still to be answered.


2019 ◽  
Vol 82 ◽  
pp. 365-371
Author(s):  
K. Augustson ◽  
S. Mathis ◽  
A. Strugarek

This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. One such instability is the purely magnetic Tayler instability, which can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations. However, most of the magnetic field configurations observed at the surface of massive stars are non-axisymmetric. Thus, extending earlier studies in spherical geometry, we introduce a formulation for the global change in the potential energy contained in a convectively-stable region for both axisymmetric and non-axisymmetric magnetic fields.


2019 ◽  
Vol 82 ◽  
pp. 35-42
Author(s):  
G.I. Ogilvie

The efficiency of tidal dissipation in convective zones of stars and giant planets depends, in part, on the response of a three-dimensional fluid flow to the periodic deformation due to the equilibrium tide — a problem considered by Jean-Paul Zahn in his PhD thesis. We review recent results on this problem and present novel calculations based on some idealized models.


2019 ◽  
Vol 82 ◽  
pp. 137-151
Author(s):  
A. Maeder ◽  
G. Meynet

We first review the main effects of stellar rotation on evolution along the fundamental discoveries by Jean-Paul. Then, we examine some of the consequences of rotation in the evolution of single and binary stars. The proper account of meridional circulation in close binaries tends to increase the synchronization time because meridional currents always counteract the tidal interaction. We consider the case of the very low metallicity Z stars, in particular the CEMP-no stars, where rotational mixing may have played a dominant role in their strange chemical composition. Then, turning to “What are the mysteries?”, we emphasize that all over the evolution and for various masses the present models seem to still have a lack of rotational coupling between cores and envelopes. We suggest that magnetic fields may produce this missing internal coupling.


2019 ◽  
Vol 82 ◽  
pp. 119-125
Author(s):  
P.G. Beck ◽  
S. Mathis ◽  
T. Kallinger ◽  
R.A. García ◽  
M. Benbakoura

Binary stars are places of complex stellar interactions. While all binaries are in principle converging towards a state of circularization, many eccentric systems are found even in advanced stellar phases. In this work we discuss the sample of binaries with a red-giant component, discovered from observations of the NASA Kepler space mission. We first discuss which effects and features of tidal interactions are detectable in photometry, spectroscopy and the seismic analysis. In a second step, the sample of binary systems observed with Kepler, is compared to the well studied sample of Verbunt & Phinney (1995, hereafter VP95). We find that this study of circularization of systems hosting evolving red-giant stars with deep convective envelopes is also well applicable to the red-giant binaries in the sample of Kepler stars.


2019 ◽  
Vol 82 ◽  
pp. 273-294
Author(s):  
J. Toomre

Rotating stars with convection zones are the great builders of magnetism in our universe. Seeking to understand how turbulent convection actually operates, and so too the dynamo action that it can achieve, has advanced through distinctive stages in which Jean-Paul Zahn was often a central player, or joined by his former students. Some of the opening steps in dealing with the basic nonlinearity in such dynamics involved modal equations (with specified horizontal structure) to study convective amplitudes and heat transports achieved as solutions equilibrated by feeding back on the mean stratification. These dealt in turn with laboratory convection, with penetrative convection in Boussinesq settings, then with compressible penetration via anelastic equations in simple geometries, and finally with stellar penetrative convection in A-type stars that coupled two convection zones. Advances in computation power allowed 2-D fully compressible simulations, and then 3-D modeling including rotation, to revisit some of these convection and penetration settings within planar layers. With externally imposed magnetic fields threading the 2-D layers, magnetoconvection could then be studied to see how the flows concentrated the fields into complex sheets, or how new classes of traveling waves could result. The era of considering turbulent convection in rotating spherical shells had also arrived, using 3-D MHD codes such as ASH to evaluate how the solar differential rotation is achieved and maintained. Similarly the manner in which global magnetic fields could be built by dynamo action within the solar convection zone took center stage, finding that coherent wreaths of strong magnetism could be built, and also cycling solutions with field reversals. The coupling of convection and magnetism continues as a vibrant research subject. It is also clear that stars like the Sun do not give up their dynamical mysteries readily when highly turbulent systems are at play.


2019 ◽  
Vol 82 ◽  
pp. 71-79 ◽  
Author(s):  
E. Bolmont ◽  
F. Gallet ◽  
S. Mathis ◽  
C. Charbonnel ◽  
L. Amard

Since 1995, numerous close-in planets have been discovered around low-mass stars (M to A-type stars). These systems are susceptible to be tidally evolving, in particular the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and also shape the orbital architecture of the surrounding planetary system. Recent theoretical studies have shown that the amplitude of the stellar dissipation can vary over several orders of magnitude as the star evolves, and that it also depends on the stellar mass and rotation. We present here one of the first studies of the dynamics of close-in planets orbiting low-mass stars (from 0.6 M☉ to 1.2 M☉) where we compute the simultaneous evolution of the star’s structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves (their restoring force is the Coriolis acceleration) excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in celestial mechanics. This is particularly true during the Pre Main Sequence (PMS) phase and to a lesser extent during the Sub Giant (SG) phase. Numerical simulations show that only the high dissipation occurring during the PMS phase has a visible effect on the semi-major axis of close-in planets. We also investigate the effect of the metallicity of the star on the tidal evolution of planets. We find that the higher the metallicity of the star, the higher the dissipation and the larger the tidally-induced migration of the planet.


2019 ◽  
Vol 82 ◽  
pp. 295-310
Author(s):  
D. Gough

I tell just part of the story of the quest to understand the dynamics of the solar tachocline, from the point of view of my relationship with my good friend Jean-Paul Zahn.


Sign in / Sign up

Export Citation Format

Share Document