solid angle
Recently Published Documents


TOTAL DOCUMENTS

667
(FIVE YEARS 64)

H-INDEX

36
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 398
Author(s):  
Anna V. Bogatskaya ◽  
Andrey E. Schegolev ◽  
Nikolay V. Klenov ◽  
Evgeniy M. Lobov ◽  
Maxim V. Tereshonok ◽  
...  

We consider two of the most relevant problems that arise when modeling the properties of a tunnel radio communication channel through a plasma layer. First, we studied the case of the oblique incidence of electromagnetic waves on a layer of ionized gas for two wave polarizations. The resonator parameters that provide signal reception at a wide solid angle were found. We also took into account the unavoidable presence of a protective layer between the plasma and the resonator, as well as the conducting elements of the antenna system in the dielectric itself. This provides the first complete simulation for a tunnel communication channel. Noise immunity and communication range studies were conducted for a prospective spacecraft radio line.


2021 ◽  
pp. 1-13
Author(s):  
Nestor J. Zaluzec

A wide range of X-ray detectors and geometries are available today on transmission/scanning transmission analytical electron microscopes. While there have been numerous reports of their individual performance, no single experimentally reproducible metric has been proposed as a basis of comparison between the systems. In this paper, we detail modeling, experimental procedures, measurements, and specimens which can be used to provide a manufacturer-independent assessment of the performance of an analytical system. Using these protocols, the geometrical collection efficiency, system peaks, and minimum detection limits can be independently assessed and can be used to determine the best conditions to conduct modern hyperspectral and/or spectrally resolved tomographic analyses for an individual instrument. A simple analytical formula and specimen is presented which after suitable system calibrations can be used to experimentally determine the X-ray detector solid angle.


2021 ◽  
pp. 56-60
Author(s):  
Alexander P. Konstantinov

The paper presents a method for assessing the daylighting of premises, which can be used directly at the stage of architectural and construction design of buildings in building information model (BIM) software complexes. The calculation method is based on the calculation of the sky factor by constructing a solid angle formed by the calculated point and the light opening of the outer wall. These operations are proposed to be performed automatically using visual programming programs that work together with the BIM complexes. Since the considered calculation method is based on the idea of the physical meaning of the daylight factor, it can be used to evaluate the daylighting according to almost any regulatory method. At the same time, all the data necessary for the calculation can be obtained directly from the building information model. The method is universal and can be used both for the calculation of side and top daylighting, considering the surrounding development. The proposed method can also be used as a tool for finding the best design solution for translucent structures of the designed building based on the requirements of thermal protection, daylighting, and safety.


2021 ◽  
pp. 1-11
Author(s):  
Shripad P. Mahulikar ◽  
Pallavi Rastogi ◽  
Ashish Bhatt
Keyword(s):  

Author(s):  
Daniel Hug ◽  
Rolf Schneider

AbstractWe consider an even probability distribution on the d-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given N independent random vectors with this distribution, under the condition that they do not positively span the whole space, the positive hull of these vectors is a random polyhedral cone (and its intersection with the unit sphere is a random spherical polytope). It was first studied by Cover and Efron. We consider the expected face numbers of these random cones and describe a threshold phenomenon when the dimension d and the number N of random vectors tend to infinity. In a similar way we treat the solid angle, and more generally the Grassmann angles. We further consider the expected numbers of k-faces and of Grassmann angles of index $$d-k$$ d - k when also k tends to infinity.


2021 ◽  
Author(s):  
Junghyun Bae ◽  
Stylianos Chatzidakis ◽  
Robert Bean

Abstract Cosmic muons are highly energetic and penetrative particles and these figures are used for imaging of large and dense objects such as spent nuclear fuels in casks and special nuclear materials in cargo. Cosmic muon intensity depends on the incident angle (zenith angle, φ), and it is known that I(φ) = I0 cos2 φ at sea level. Low intensity of cosmic muon requires long measurement time to acquire statistically meaningful counts. Therefore, high-energy particle simulations e.g., GEANT4, are often used to guide measurement studies. However, the measurable cosmic muon count rate changes upon detector geometry and configuration. Here we develop an “effective solid angle” model to estimate experimental results more accurately than the simple cosine-squared model. We show that the cosine-squared model has large error at high zenith angles (φ ≥ 60°), whereas our model provides improved estimations at all zenith angles. We anticipate our model will enhance the ability to estimate actual measurable cosmic muon count rates in muon imaging applications by reducing the gap between simulation and measurement results. This will increase the value of modeling results and improve the quality of experiments and applications in muon detection and imaging.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Ángela Saá Hernández ◽  
Diego González-Díaz ◽  
Pablo Villanueva ◽  
Carlos Azevedo ◽  
Marcos Seoane

A feasible implementation of a novel X-ray detector for highly energetic X-ray photons with a large solid angle coverage, optimal for the detection of Compton X-ray scattered photons, is described. The device consists of a 20 cm-thick sensitive volume filled with xenon at atmospheric pressure. When the Compton-scattered photons interact with the xenon, the released photoelectrons create clouds of secondary ionization, which are imaged using the electroluminescence produced in a custom-made multi-hole acrylic structure. Photon-by-photon counting can be achieved by processing the resulting image, taken in a continuous readout mode. Based on Geant4 simulations, by considering a realistic detector design and response, it is shown that photon rates up to at least 1011 photons s−1 on-sample (5 µm water-equivalent cell) can be processed, limited by the spatial diffusion of the photoelectrons in the gas. Illustratively, if making use of the Rose criterion and assuming the dose partitioning theorem, it is shown how such a detector would allow obtaining 3D images of 5 µm-size unstained cells in their native environment in about 24 h, with a resolution of 36 nm.


Sign in / Sign up

Export Citation Format

Share Document