A type system for a lambda calculus with assignments

Author(s):  
Kung Chen ◽  
Martin Odersky
Keyword(s):  
1992 ◽  
Vol 2 (1) ◽  
pp. 55-91 ◽  
Author(s):  
Pierre-Louis Curien ◽  
Giorgio Ghelli

A subtyping relation ≤ between types is often accompanied by a typing rule, called subsumption: if a term a has type T and T≤U, then a has type U. In presence of subsumption, a well-typed term does not codify its proof of well typing. Since a semantic interpretation is most naturally defined by induction on the structure of typing proofs, a problem of coherence arises: different typing proofs of the same term must have related meanings. We propose a proof-theoretical, rewriting approach to this problem. We focus on F≤, a second-order lambda calculus with bounded quantification, which is rich enough to make the problem interesting. We define a normalizing rewriting system on proofs, which transforms different proofs of the same typing judgement into a unique normal proof, with the further property that all the normal proofs assigning different types to a given term in a given environment differ only by a final application of the subsumption rule. This rewriting system is not defined on the proofs themselves but on the terms of an auxiliary type system, in which the terms carry complete information about their typing proof. This technique gives us three different results:— Any semantic interpretation is coherent if and only if our rewriting rules are satisfied as equations.— We obtain a proof of the existence of a minimum type for each term in a given environment.— From an analysis of the shape of normal form proofs, we obtain a deterministic typechecking algorithm, which is sound and complete by construction.


1991 ◽  
Vol 1 (1) ◽  
pp. 3-48 ◽  
Author(s):  
Luca Cardelli ◽  
John C. Mitchell

We define a simple collection of operations for creating and manipulating record structures, where records are intended as finite associations of values to labels. A second-order type system over these operations supports both subtyping and polymorphism. We provide typechecking algorithms and limited semantic models.Our approach unifies and extends previous notions of records, bounded quantification, record extension, and parametrization by row-variables. The general aim is to provide foundations for concepts found in object-oriented languages, within a framework based on typed lambda-calculus.


10.29007/3n54 ◽  
2018 ◽  
Author(s):  
Thomas Icard ◽  
Lawrence Moss

This paper adds monotonicity and antitonicity information to the typed lambda calculus, thereby providing a foundation for the Monotonicity Calculus first developed by van Benthem and others. We establish properties of the type system, propose a syntax, semantics, and proof calculus, and prove completeness for the calculus with respect to hierarchies of monotone and antitone functions over base preorders.


2004 ◽  
Vol 14 (5) ◽  
pp. 519-546 ◽  
Author(s):  
MÁRIO FLORIDO ◽  
LUÍS DAMAS

In this paper we present a notion of expansion of a term in the lambda-calculus which transforms terms into linear terms. This transformation replaces each occurrence of a variable in the original term by a fresh variable taking into account non-trivial implications in the structure of the term caused by these simple replacements. We prove that the class of terms which can be expanded is the same of terms typable in an Intersection Type System, i.e. the strongly normalizable terms. We then show that expansion is preserved by weak-head reduction, the reduction considered by functional programming languages.


Author(s):  
Siva Reddy ◽  
Oscar Täckström ◽  
Michael Collins ◽  
Tom Kwiatkowski ◽  
Dipanjan Das ◽  
...  

The strongly typed syntax of grammar formalisms such as CCG, TAG, LFG and HPSG offers a synchronous framework for deriving syntactic structures and semantic logical forms. In contrast—partly due to the lack of a strong type system—dependency structures are easy to annotate and have become a widely used form of syntactic analysis for many languages. However, the lack of a type system makes a formal mechanism for deriving logical forms from dependency structures challenging. We address this by introducing a robust system based on the lambda calculus for deriving neo-Davidsonian logical forms from dependency trees. These logical forms are then used for semantic parsing of natural language to Freebase. Experiments on the Free917 and Web-Questions datasets show that our representation is superior to the original dependency trees and that it outperforms a CCG-based representation on this task. Compared to prior work, we obtain the strongest result to date on Free917 and competitive results on WebQuestions.


2012 ◽  
Vol 47 (9) ◽  
pp. 29-40 ◽  
Author(s):  
Sheng Chen ◽  
Martin Erwig ◽  
Eric Walkingshaw
Keyword(s):  

2009 ◽  
Vol 19 (5) ◽  
pp. 1029-1059 ◽  
Author(s):  
LIONEL VAUX

We introduce an extension of the pure lambda calculus by endowing the set of terms with the structure of a vector space, or, more generally, of a module, over a fixed set of scalars. Moreover, terms are subject to identities similar to the usual pointwise definition of linear combinations of functions with values in a vector space. We then study a natural extension of beta reduction in this setting: we prove it is confluent, then discuss consistency and conservativity over the ordinary lambda calculus. We also provide normalisation results for a simple type system.


Sign in / Sign up

Export Citation Format

Share Document