Solubilizing Systems for Parenteral Formulation Development—Small Molecules

Author(s):  
JAMES E. KIPP
Author(s):  
NEELKUMAR K. DARAJI ◽  
VIPUL P. PATEL ◽  
VINODKUMAR D. RAMANI

Objective: Mefenamic acid (MFA) is an NSAID that exhibits anti-inflammatory analgesic and antipyretic activity. Peak plasma levels are attained in 2-4 h and the elimination half-life approximates 2 h, repetitive administration of tablets for 3-5 times a day is desired. It is supplied only in the form of tablets for oral administration. In acute conditions drug administered parenterally could give rapid relief from severe symptoms like pain. Thus, formulation of injectable formulation of MFA could be better alternative compared to conventional tablet dosage form. The low aqueous solubility of MFA precludes its use in parenteral formulation development. Methods: In this work attempt were made to enhance the aqueous solubility of mefenamic acid using mixed solvency technique. For that different hydrotropic agents such as Urea, Sodium acetate, sodium benzoate, sodium citrate and their blends were evaluated. Optimal concentration of hydrotropic agent in blend was determined using D-optimal mixture experimental design. The optimized bled was used to develop the aqueous injection of mefenamic acid. The developed injection was subjected for various quality control tests and stability of developed formulation was also evaluated. Results: The aqueous solubility in optimized blend of hydrotropic agent batches (U: SA: SB: SC, 4:4:23:9 %w/v) showed 835.71-fold compared to MFA solubility in distilled water. The quality control tests for parenteral formulation and accelerated stability study were found to be within prescribed limits and stable. Conclusion: The inadequate solubility of MFA was overcome, and aqueous injection was successfully developed which can be serve as cost effective treatment in various indications.


2013 ◽  
Vol 3 (1) ◽  
pp. 2
Author(s):  
Rakesh P. Patel ◽  
Kaushal P. Patel ◽  
Kushal A. Modi ◽  
Chirayu J. Pathak

The objective of this study was to develop and manufacture a stable parenteral formulation for Aspirin, a non steroidal anti-inflammatory agent. The solubility and stability of the drug was determined. Solubility studies suggested that Aspirin exhibited poor aqueous solubility but showed appreciable solubility in non-aqueous solvents. Based on the preformulation studies, a lyophilized parenteral formulation containing 25 mg/mL of Aspirin was prepared in a solvent system containing of 80% v/v water and 20% v/v polyethylene glycol-400 (PEG-400). Rubber closures, filter membranes, and liquid transfer tubing were selected on the basis of compatibility studies. The formulation was subjected to accelerated stability studies. After reconstitution with sterile water for injection, Aspirin injection was stable for a period of 8 hr at 2°C to 8°C. Accelerated stability studies suggested that the lyophilized product should be kept at controlled room temperature for longterm storage. The proposed non-aqueous solvent concentration used, are known to safe hence, toxicities/safety related issues may not raise. The proposed techniques would be economical, convenient and safe. Thus, the study opens the chances of preparing lyophilized formulation of poorly-water soluble drugs.


2014 ◽  
Vol 87 (1) ◽  
pp. 160-169 ◽  
Author(s):  
Lijiang Chen ◽  
Yongjie Wang ◽  
Jiaozhen Zhang ◽  
Leilei Hao ◽  
Hejian Guo ◽  
...  

Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


Author(s):  
H.B. Pollard ◽  
C.E. Creutz ◽  
C.J. Pazoles ◽  
J.H. Scott

Exocytosis is a general concept describing secretion of enzymes, hormones and transmitters that are otherwise sequestered in intracellular granules. Chemical evidence for this concept was first gathered from studies on chromaffin cells in perfused adrenal glands, in which it was found that granule contents, including both large protein and small molecules such as adrenaline and ATP, were released together while the granule membrane was retained in the cell. A number of exhaustive reviews of this early work have been published and are summarized in Reference 1. The critical experiments demonstrating the importance of extracellular calcium for exocytosis per se were also first performed in this system (2,3), further indicating the substantial service given by chromaffin cells to those interested in secretory phenomena over the years.


Sign in / Sign up

Export Citation Format

Share Document