The Mitochondrial Permeability Transition Pore – from Molecular Mechanism to Reperfusion Injury and Cardioprotection

Mitochondria ◽  
2007 ◽  
pp. 241-269 ◽  
Author(s):  
Andrew P. Halestrap ◽  
Samatha J. Clarke ◽  
Igor Khalilin
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jinkun Xi ◽  
Huihua Wang ◽  
Guillaume Chanoit ◽  
Guang Cheng ◽  
Robert A Mueller ◽  
...  

Although resveratrol has been demonstrated to be cardioprotective, the detailed cellular and molecular mechanisms that mediate the protection remain elusive. We aimed to determine if resveratrol protects the heart at reperfusion by modulating the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β (GSK-3β). Resveratrol (10μM) given at reperfusion reduced infarct size (12.2 ± 2.5 % of risk zone vs. 37.9 ± 3.1 % of risk zone in control, n = 6) in isolated rat hearts subjected to 30 min regional ischemia followed by 2 h of reperfusion, an effect that was abrogated by the mPTP opener atractyloside (30.9 ± 8.1 % of risk zone), implying that resveratrol may protect the heart at reperfusion by modulating the mPTP opening. To define the signaling mechanism underlying the action of resveratrol, we determined GSK-3β activity by measuring its phosphorylation at Ser 9 . Resveratrol significantly enhanced GSK-3β phosphorylation upon reperfusion (225.2 ± 30.0 % of control at 5 min of reperfusion). Further experiments showed that resveratrol induces translocation of GSK-3β to mitochondria and translocated GSK-3β interacts with the mPTP component cyclophilin D but not VDAC (the voltage-dependent anion channel) or ANT (the adenine nucleotide translocator) in cardiac mitochondria. Taken together, these data suggest that resveratrol prevents myocardial reperfusion injury by targeting the mPTP opening via GSK-3β. Translocation of GSK-3β to mitochondria and its interaction with the mPTP component cyclophilin D may serve as an essential mechanism that mediates the protective effect of resveratrol on reperfusion injury.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yonggui He ◽  
Jinkun Xi ◽  
Huan Zheng ◽  
Yidong Zhang ◽  
Yuanzhe Jin ◽  
...  

Objective. This study aimed to investigate whether astragaloside IV modulates the mitochondrial permeability transition pore (mPTP) opening through glycogen synthase kinase 3β(GSK-3β) in H9c2 cells.Methods. H9c2 cells were exposed to astragaloside IV for 20 min. GSK-3β(Ser9), Akt (Ser473), and VASP (Ser239) activities were determined with western blot. The mPTP opening was evaluated by measuring mitochondrial membrane potential (ΔΨm). Nitric oxide (NO) generation was measured by 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) diacetate. Fluorescence images were obtained with confocal microscopy.Results. Astragaloside IV significantly enhanced GSK-3βphosphorylation and prevented H2O2-induced loss ofΔΨm. These effects of astragaloside IV were reversed by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the NO sensitive guanylyl cyclase selective inhibitor ODQ, and the PKG inhibitor KT5823. Astragaloside IV activated Akt and PKG. Astragaloside IV was also shown to increase NO production, an effect that was reversed by L-NAME and LY294002. Astragaloside IV applied at reperfusion reduced cell death caused by simulated ischemia/reperfusion, indicating that astragaloside IV can prevent reperfusion injury. Conclusions. These data suggest that astragaloside IV prevents the mPTP opening and reperfusion injury by inactivating GSK-3βthrough the NO/cGMP/PKG signaling pathway. NOS is responsible for NO generation and is activated by the PI3K/Akt pathway.


Author(s):  
Martin John Lewis ◽  
Igor Khaliulin ◽  
Katie Hall ◽  
M.Saadeh Suleiman

Metabolic and ionic changes during ischaemia predispose the heart to the damaging effects of reperfusion. Such changes and the resulting injury differ between immature and adult heart. Therefore, cardioprotective strategies for adults need to be tested in immature heart. We have recently shown that simultaneous activation of PKA and EPAC confers marked cardioprotection in adult hearts. The aim of this study is to investigate the efficacy of this intervention in immature hearts and determine whether the mitochondrial permeability transition pore (MPTP) is involved. Isolated perfused Langendorff hearts from both adult and immature rats were exposed to global ischaemia and reperfusion injury (I/R) following control perfusion or perfusion after an equilibra-tion period with activators of PKA and/or EPAC. Functional outcome and reperfusion injury were measured and in parallel, mitochondria were isolated following 5 min reperfusion to determine whether cardioprotective interventions involved changes in MPTP opening behaviour. Perfusion for 5 minutes preceding ischaemia of injury- matched adult and immature hearts with 5 µM 8-Br (8-Br-cAMP-AM), an activator of both PKA and EPAC, led to significant reduction in post-reperfusion CK release and infarct size. Perfusion with this agent also led to a reduction in MPTP opening propensity in both adult and immature hearts. These data show that immature hearts are innately more resistant to I/R injury than adults, and that this is due to a reduced ten-dency to MPTP opening following reperfusion. Further, simultaneous stimulation of PKA & EPAC causes cardioprotection which is additive to the innate resistance.


Sign in / Sign up

Export Citation Format

Share Document