glycogen synthase
Recently Published Documents


TOTAL DOCUMENTS

5314
(FIVE YEARS 849)

H-INDEX

172
(FIVE YEARS 14)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. Ullah ◽  
N. Ali ◽  
S. Ahmad ◽  
S. U. Rahman ◽  
S. Alghamdi ◽  
...  

Abstract Diabetes mellitus (DM) is a non-communicable disease throughout the world in which there is persistently high blood glucose level from the normal range. The diabetes and insulin resistance are mainly responsible for the morbidities and mortalities of humans in the world. This disease is mainly regulated by various enzymes and hormones among which Glycogen synthase kinase-3 (GSK-3) is a principle enzyme and insulin is the key hormone regulating it. The GSK-3, that is the key enzyme is normally showing its actions by various mechanisms that include its phosphorylation, formation of protein complexes, and other cellular distribution and thus it control and directly affects cellular morphology, its growth, mobility and apoptosis of the cell. Disturbances in the action of GSK-3 enzyme may leads to various disease conditions that include insulin resistance leading to diabetes, neurological disease like Alzheimer’s disease and cancer. Fluoroquinolones are the most common class of drugs that shows dysglycemic effects via interacting with GSK-3 enzyme. Therefore, it is the need of the day to properly understand functions and mechanisms of GSK-3, especially its role in glucose homeostasis via effects on glycogen synthase.


2022 ◽  
Author(s):  
Samuel Pazicky ◽  
Arne Alder ◽  
Haydyn Mertens ◽  
Dmitri I. Svergun ◽  
Tim Gilberger ◽  
...  

As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasite's life cycle. In the uncanonical N‑terminal region of the parasite enzyme, we identified several autophosphorylation sites and probed their role in activity regulation of PfGSK3. By combining molecular modeling with experimental small-angle X-ray scattering data, we show that increased PfGSK3 activity is promoted by conformational changes in the PfGSK3 N‑terminus, triggered by N‑terminal phosphorylation. Our work provides novel insights into the structure and regulation of the malarial PfGSK3.


2022 ◽  
Vol 221 (3) ◽  
Author(s):  
Suzan Kors ◽  
Christian Hacker ◽  
Chloe Bolton ◽  
Renate Maier ◽  
Lena Reimann ◽  
...  

Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A–binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein–associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome–ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB—and thus peroxisome–ER contact sites—differently. Moreover, we demonstrate that GSK3β (glycogen synthase kinase-3 β) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome–ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.


2022 ◽  
Author(s):  
Nydia Tejeda-Munoz ◽  
Marco Morselli ◽  
Yuki Moriyama ◽  
Pooja Sheladiya ◽  
Matteo Pellegrini ◽  
...  

During canonical Wnt signaling, the Lrp6 and Frizzled co-receptors bind to the Wnt growth factor and the complex is endocytosed and sequestered together with Glycogen Synthase Kinase 3 (GSK3), Dishevelled (Dvl), and Axin inside the intraluminal vesicles of late endosomes, known as multivesicular bodies (MVBs). Here we present experiments showing that Wnt causes the endocytosis of focal adhesion (FA) proteins and depletion of Integrin β 1 (ITGβ1) from the cell surface. FAs and integrins link the cytoskeleton to the extracellular matrix. Wnt-induced endocytosis caused ITGβ1 depletion from the plasma membrane and was accompanied by striking changes in the actin cytoskeleton. In situ protease protection assays in cultured cells showed that ITGβ1 was sequestered within membrane-bounded organelles that corresponded to Wnt-induced MVBs containing GSK3 and FA-associated proteins. An in vivo model using Xenopus embryos dorsalized by Wnt8 mRNA showed that ITGβ1 depletion decreased Wnt signaling. The finding of a crosstalk between two mayor signaling pathways, canonical Wnt and focal adhesions, should be relevant to human cancer and cell biology.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Aleksandra Zečić ◽  
Ineke Dhondt ◽  
Bart P. Braeckman

DAF-16-dependent activation of a dauer-associated genetic program in the C. elegans insulin/IGF-1 daf-2(e1370) mutant leads to accumulation of large amounts of glycogen with concomitant upregulation of glycogen synthase, GSY-1. Glycogen is a major storage sugar in C. elegans that can be used as a short-term energy source for survival, and possibly as a reservoir for synthesis of a chemical chaperone trehalose. Its role in mitigating anoxia, osmotic and oxidative stress has been demonstrated previously. Furthermore, daf-2 mutants show increased abundance of the group 3 late embryogenesis abundant protein LEA-1, which has been found to act in synergy with trehalose to exert its protective role against desiccation and heat stress in vitro, and to be essential for desiccation tolerance in C. elegans dauer larvae. Here we demonstrate that accumulated glycogen is not required for daf-2 longevity, but specifically protects against hyperosmotic stress, and serves as an important energy source during starvation. Similarly, lea-1 does not act to support daf-2 longevity. Instead, it contributes to increased resistance of daf-2 mutants to heat, osmotic, and UV stress. In summary, our experimental results suggest that longevity and stress resistance can be uncoupled in IIS longevity mutants.


2022 ◽  
pp. 1-14
Author(s):  
Li-Na Zhang ◽  
Meng-Jie Li ◽  
Ying-Hui Shang ◽  
Yun-Ru Liu ◽  
Huang Han-Chang ◽  
...  

Background: Alzheimer’s disease (AD) characterized by neurofibrillary tangles caused by hyperphosphorylated tau is the most common cause of dementia. Zeaxanthin (Zea), derived from fruits and vegetables, may reduce the risk of AD. Endoplasmic reticulum stress (ERS) might cause memory impairment in AD. Objective: Here, we studied protective role of Zea on the relationship among ERS, activity of glycogen synthase kinase 3β (GSK-3β, tau phosphorylated kinase), and p-Tau (Ser 396 and Thr 231). Methods: The results were obtained in non-RA and RA group by using different treatment, such as 9-cis-retinoic acid (RA), TM (ERS inducer), Zea, 4-PBA (ERS inhibitor), and SB216763 (GSK-3β inhibitor). The methods included flow cytometry and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] for the detections of cell cycle and cell viability and western blot as a third measure of proteins in relation to ERS and tau phosphorylation. We have collected and analyzed all the data that suggested application of drugs for the treatment in non-RA and RA group. Results: Zea displays its protection on TM-induced cell injury, upregulation of GRP78 expression, and change of GSK-3β activity and tau phosphorylation when 4-PBA and SB216763 interfere with the process. Conclusion: These studies indicated that Zea is in vicious circle in ERS, GSK-3β, and tau phosphorylation, and further reflect its potential value in AD.


2022 ◽  
Author(s):  
Ashkan Golshani ◽  
Sasi Kumar Jagadeesan ◽  
Mustafa Algafari ◽  
Maryam Hajikarimlou ◽  
Sarah Takallou ◽  
...  

Abstract Lithium chloride (LiCl) is a widely used and extensively researched drug for the treatment of bipolar disorder (BD). As a result, LiCl has been the subject of research studying its toxicity, mode of action, and downstream cellular responses. LiCl has been shown to influence cell signalling and signalling transduction pathways through protein kinase C and glycogen synthase kinase-3 in mammalian cells. LiCl's significant downstream effects on the translational pathway necessitate further investigation. In yeast, LiCl is found to lower the activity and alter the expression of PGM2, a gene encoding a sugar-metabolism phosphoglucomutase. When phosphoglucomutase activity is reduced in the presence of galactose, intermediates of galactose metabolism aggregate, causing cell sensitivity to LiCl. In this study, we identified that deleting the genes PEX11 and RIM20 increases yeast LiCl sensitivity. We further show that PEX11 and RIM20 regulate the expression of PGM2 mRNA at the translation level. The observed alteration of translation seems to target the structured 5′-untranslated region (5′-UTR) of the PGM2 mRNA.


2022 ◽  
Author(s):  
Tirosh Shapira ◽  
Celine Rens ◽  
Virginia Pichler ◽  
William Rees ◽  
Theodor Steiner ◽  
...  

Abstract GSK3β has been proposed to have an essential role in Coronaviridae infection. Screening of a targeted library of GSK3β inhibitors against SARS-CoV-2 and HCoV-229E resulted in identification of high proportion of active compounds with low toxicity to host cells. A select lead compound, T-1686568, showed dose-dependent activity against SARS-CoV-2 transcription, translation and viral particle release in multiple cell lines and primary organoids. A protein kinase substrate profiling assay combined with western blot analysis showed that SARS-CoV-2 nucleocapsid is phosphorylated by GSK3β on S180/S184, S190/S194 and T198 which have already been primed in the adjacent phospho-sites S188, T198 and S206 respectively. Inhibition by T-1686568 resulted in reduction of the S1 Spike protein levels, an accumulation of the Nucleocapsid (N) protein and maintenance of the non-structural (NSP2) level in infected Huh-7.5.1 cells, indicating that N phosphorylation might serve as a critical precursor for processing and release of mature viruses.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010074
Author(s):  
Ashutosh Arun ◽  
Kayla J. Rayford ◽  
Ayorinde Cooley ◽  
Tanu Rana ◽  
Girish Rachakonda ◽  
...  

The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.


Sign in / Sign up

Export Citation Format

Share Document