cellular protection
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 76)

H-INDEX

46
(FIVE YEARS 5)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. P. Sousa ◽  
D. A. Fernandes ◽  
M. D. L. Ferreira ◽  
L. V. Cordeiro ◽  
M. F. V. Souza ◽  
...  

Abstract Tiliroside is a glycosidic flavonoid present in many plants species including Helicteres velutina K. Schum (Malvaceae sensu lato), commonly known in Brazil as “pitó”. This molecule has been shown to have many biological activities, however no study has been carried out to investigate the toxicity of this substance. The present work aimed to evaluate the possible cellular toxicity in silico, in vitro and ex-vivo of the kaempferol-3-O-β-D-(6”-E-p-coumaroyl) glucopyranoside (tiliroside), through chemical structure analysis, toxicity assessment and predictive bioactive properties, using human samples for in vitro and ex-vivo tests. The in silico analysis suggests that tiliroside exhibited great absorption index when penetrating biological membranes. In addition, it also displayed considerable potential for cellular protection against free radicals, and anticarcinogenic, antioxidant, antineoplastic, anti-inflammatory, anti-hemorrhagic and antithrombotic activities. The assessment of the hemolytic and genotoxic effects of tiliroside showed low hemolysis rates in red blood cells and absence of cellular toxicity in the oral mucosa cells. The data obtained indicate that this molecule could be a promising therapeutic approach as a possible new drug with biotechnological potential.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Angel J. Matilla

To survive in the dry state, orthodox seeds acquire desiccation tolerance. As maturation progresses, the seeds gradually acquire longevity, which is the total timespan during which the dry seeds remain viable. The desiccation-tolerance mechanism(s) allow seeds to remain dry without losing their ability to germinate. This adaptive trait has played a key role in the evolution of land plants. Understanding the mechanisms for seed survival after desiccation is one of the central goals still unsolved. That is, the cellular protection during dry state and cell repair during rewatering involves a not entirely known molecular network(s). Although desiccation tolerance is retained in seeds of higher plants, resurrection plants belonging to different plant lineages keep the ability to survive desiccation in vegetative tissue. Abscisic acid (ABA) is involved in desiccation tolerance through tight control of the synthesis of unstructured late embryogenesis abundant (LEA) proteins, heat shock thermostable proteins (sHSPs), and non-reducing oligosaccharides. During seed maturation, the progressive loss of water induces the formation of a so-called cellular “glass state”. This glassy matrix consists of soluble sugars, which immobilize macromolecules offering protection to membranes and proteins. In this way, the secondary structure of proteins in dry viable seeds is very stable and remains preserved. ABA insensitive-3 (ABI3), highly conserved from bryophytes to Angiosperms, is essential for seed maturation and is the only transcription factor (TF) required for the acquisition of desiccation tolerance and its re-induction in germinated seeds. It is noteworthy that chlorophyll breakdown during the last step of seed maturation is controlled by ABI3. This update contains some current results directly related to the physiological, genetic, and molecular mechanisms involved in survival to desiccation in orthodox seeds. In other words, the mechanisms that facilitate that an orthodox dry seed is a living entity.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3530
Author(s):  
Dun-Jie Chuang ◽  
Subhashree Pethaperumal ◽  
Bijaya Siwakoti ◽  
Hung-Jen Chien ◽  
Ching-Feng Cheng ◽  
...  

Psychological stress increases the risk of gastrointestinal (GI) tract diseases, which involve bidirectional communication of the GI and nerves systems. Acute stress leads to GI ulcers; however, the mechanism of the native cellular protection pathway, which safeguards tissue integrality and maintains GI homeostasis, remains to be investigated. In a mouse model of this study, restraint stress induced GI leakage, abnormal tight junction protein expression, and cell death of gut epithelial cells. The expression of activating transcription factor 3 (ATF3), a stress-responsive transcription factor, is upregulated in the GI tissues of stressed animals. ATF3-deficient mice displayed an exacerbated phenotype of GI injuries. These results suggested that, in response to stress, ATF3 is part of the native cellular protective pathway in the GI system, which could be a molecular target for managing psychological stress-induced GI tract diseases.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1581
Author(s):  
Toshihiko Aki ◽  
Koichi Uemura

Cell death is the ultimate form of cellular dysfunction, and is induced by a wide range of stresses including genotoxic stresses. During genotoxic stress, two opposite cellular reactions, cellular protection through DNA repair and elimination of damaged cells by the induction of cell death, can occur in both separate and simultaneous manners. ATM (ataxia telangiectasia mutated) kinase (hereafter referred to as ATM) is a protein kinase that plays central roles in the induction of cell death during genotoxic stresses. It has long been considered that ATM mediates DNA damage-induced cell death through inducing apoptosis. However, recent research progress in cell death modality is now revealing ATM-dependent cell death pathways that consist of not only apoptosis but also necroptosis, ferroptosis, and dysfunction of autophagy, a cellular survival mechanism. In this short review, we intend to provide a brief outline of cell death mechanisms in which ATM is involved, with emphasis on pathways other than apoptosis.


2021 ◽  
Author(s):  
Mike T. Veling ◽  
Dan T. Nguyen ◽  
Nicole N. Thadani ◽  
Michela E. Oster ◽  
Nathan J. Rollins ◽  
...  

ABSTRACTMany organisms can survive extreme conditions and successfully recover to normal life. This extremotolerant behavior has been attributed in part to repetitive, amphipathic, and intrinsically disordered proteins that are upregulated in the protected state. Here, we assemble a library of approximately 300 naturally-occurring and designed extremotolerance-associated proteins to assess their ability to protect human cells from chemically-induced apoptosis. We show that proteins from tardigrades, nematodes, and the Chinese giant salamander are apoptosis protective. Notably, we identify a region of the human ApoE protein with similarity to extremotolerance-associated proteins that also protects against apoptosis. This region mirrors the phase separation behavior seen with such proteins, like the tardigrade protein CAHS2. Moreover, we identify a synthetic protein, DHR81, that shares this combination of elevated phase separation propensity and apoptosis protection. Finally, we demonstrate that driving protective proteins into the condensate state increases apoptosis protection, and highlight the ability for DHR81 condensates to sequester caspase-7. Taken together, this work draws a link between extremotolerance-associated proteins, condensate formation, and human cellular protection.


2021 ◽  
Vol 8 (15) ◽  
pp. 101-115
Author(s):  
Marco Aurélio Martins Rodrigues

A morte biológica é um processo que se relaciona com uma série de ações biológicas celulares sinalizadoras. Na busca de compreensão da alma é possível sugerirmos proposições que possam interagir e integrar os corpos físico e espiritual. Perante proteínas celulares responsáveis pela proteção celular e eliminação de componentes tóxicos, buscamos objetivar uma associação entre as perspectivas filosóficas, inclusive na religião para o processo de morte. A morte deve ser compreendida como condição natural para os seres vivos, e que desencadeia a esperança na própria vida. Na morte programada e prevista pelas células biológicas, seja por motivo de saúde ou até mesmo a finalização de um tempo de vida, as etiquetas químicas da morte entram em ação. Morte e vida estão em íntima relação biológica e espiritual. É nesse sentido que a morte também é um fator de manutenção das tradições e preocupações humanas para uma evolução biológica e divina. Palavras-chave: A Morte Biológica. E Espiritual. Fenômeno Natural Celular.   Abstract Biological death is a process that is related to a series of signaling cellular biological actions. In the search for understanding the soul, it is possible to suggest propositions that can interact and integrate the physical and spiritual bodies. Faced with cellular proteins responsible for cellular protection and elimination of toxic components, we seek to aim at an association between philosophical perspectives, including religion for the process of death. Death must be understood as a natural condition for living beings, which triggers hope in life itself. In programmed and predicted death by biological cells, whether for health reasons or even the end of a lifetime, the chemical labels of death come into play. Death and life are in an intimate biological and spiritual relationship. It is in this sense that death is also a factor in maintaining human traditions and concerns for a biological and divine evolution. Keywords: Biological Death. And Spiritual. Signaling Cellular biological Actions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Mu ◽  
Huisheng Ma ◽  
Hong Chen ◽  
Xiaoxia Zhang ◽  
Mengyi Ye

The aim of this study was to investigate the role of luteolin in the mechanism of ultraviolet radiation B (UVB)-induced photoaging. An in vivo photoaging model was established using UVB irradiation of bare skin on the back of rats, and an in vitro photoaging model was established using UVB irradiation of human dermal fibroblasts (HDF). Skin damage was observed using hematoxylin-eosin (HE) and Masson staining, skin and cellular reactive oxygen species (ROS) levels were detected by DHE and DCF fluorescent probes, mitochondrial membrane potential was detected by JC-1 staining, and protein expressions were detected by immunofluorescence and Western Blot. Results from animal experiments showed that luteolin reduced UVB-induced erythema and wrinkle formation. Results from cellular assays showed that luteolin inhibited UVB-induced decrease in cell viability. In addition, in vitro and in vivo experiments showed that luteolin reduced oxidative stress levels, decreased activation of matrix metalloproteinases (MMPs) and increased collagen expression. Continued cellular experiments using 3-TYP, an inhibitor of Sirtuin 3 (SIRT3), revealed a loss of cellular protection by luteolin and a decrease in collagen, suggesting that luteolin acts by targeting and promoting SIRT3. luteolin is involved in the protection of skin cells against UVB radiation-induced ageing via the SIRT3/ROS/mitogen-activated protein kinases (MAPK) axis and it may be a promising therapeutic agent for the prevention of UVB photoaging.


2021 ◽  
Vol 118 (35) ◽  
pp. e2107673118
Author(s):  
Chunyi Liu ◽  
Thomas Jursa ◽  
Michael Aschner ◽  
Donald R. Smith ◽  
Somshuvra Mukhopadhyay

Manganese (Mn) is an essential metal that induces incurable parkinsonism at elevated levels. However, unlike other essential metals, mechanisms that regulate mammalian Mn homeostasis are poorly understood, which has limited therapeutic development. Here, we discovered that the exposure of mice to a translationally relevant oral Mn regimen up-regulated expression of SLC30A10, a critical Mn efflux transporter, in the liver and intestines. Mechanistic studies in cell culture, including primary human hepatocytes, revealed that 1) elevated Mn transcriptionally up-regulated SLC30A10, 2) a hypoxia response element in the SLC30A10 promoter was necessary, 3) the transcriptional activities of hypoxia-inducible factor (HIF) 1 or HIF2 were required and sufficient for the SLC30A10 response, 4) elevated Mn activated HIF1/HIF2 by blocking the prolyl hydroxylation of HIF proteins necessary for their degradation, and 5) blocking the Mn-induced up-regulation of SLC30A10 increased intracellular Mn levels and enhanced Mn toxicity. Finally, prolyl hydroxylase inhibitors that stabilize HIF proteins and are in advanced clinical trials for other diseases reduced intracellular Mn levels and afforded cellular protection against Mn toxicity and also ameliorated the in vivo Mn-induced neuromotor deficits in mice. These findings define a fundamental homeostatic protective response to Mn toxicity—elevated Mn levels activate HIF1 and HIF2 to up-regulate SLC30A10, which in turn reduces cellular and organismal Mn levels, and further indicate that it may be possible to repurpose prolyl hydroxylase inhibitors for the management of Mn neurotoxicity.


Sign in / Sign up

Export Citation Format

Share Document