On the Identification of Hysteretic Systems, Part I: an Extended Evolutionary Scheme

Author(s):  
Keith Worden ◽  
Graeme Manson
Author(s):  
Giovanni Formica ◽  
Nicoló Vaiana ◽  
Luciano Rosati ◽  
Walter Lacarbonara

2014 ◽  
Vol 27 (5) ◽  
pp. 477-485 ◽  
Author(s):  
Ming Xu ◽  
Xiaoling Jin ◽  
Yong Wang ◽  
Zhilong Huang

2016 ◽  
Vol 142 (9) ◽  
pp. 04016066
Author(s):  
Ana Maria Mitu ◽  
Tudor Sireteanu ◽  
Marius Giuclea ◽  
Ovidiu Solomon

1991 ◽  
Vol 27 (6) ◽  
pp. 4766-4768 ◽  
Author(s):  
I.D. Mayergoyz ◽  
C.E. Korman

1996 ◽  
Vol 39 (6) ◽  
Author(s):  
V. Pasquale ◽  
M. Verdoya ◽  
P. Chiozzi

The total tectonic subsidence, thermal state and seismotectonic regime have been analysed to better constrain the dynamic processes which originated the basins of the Southwestern Mediterranean. It is argued that backarc extension and oceanic spreading are the possible and main processes which took place within a compressional framework, driven by the interaction between the African and European plates. As inferred by both subsidence and heat-flux data, in the central part of the Algerian-Balearic basin the crust is oceanic, 20 Ma old on average, originated by a spreading phase, which also affected the Ligurian-Provençal basin. The Alboran basin, which is underlain by stretched continental crust, shows an intermediate seismic activity and a few deep events, explainable by a gravitational collapse of cold lithosphere. After a review of the most recent geodynamical hypotheses, an evolutionary scheme is attempted envisaging the lateral continental escape of the Gibraltar arc. Within a convergent tectonic framework, some lithospheric material could translate almost perpendicular to the convergence direction, and undergo a lateral subduction process, secondary to the main boundary between plates.


Author(s):  
Ozcan E

The Eocene shallow marine Pellatispira-beds in the upper part of the Drazinda Formation represent the latest phase of Cenozoic Tethyan marine deposition in the Sulaiman Range, West Pakistan. The unit consists of stratigraphically important taxa as Heterostegina,Silvestriella, Pellatispira, a new Baculogypsina (possibly ancestral to modern Baculogypsina) and reticulate Nummulites implying a latest middle to late Eocene (late Bartonian-Priabonian) age. A more precise age of the unit requires the biometric study of reticulate Nummulites, the evolutionary scheme of which is better known from the peri-Mediterranean region in the Tethys. This group, which was subdivided into a series of successive chrono-species based on the biometry of inner cross-diameter of proloculus and changes in the types of granulation/reticulation on the test surface in the late Eocene-late Oligocene interval, appears to have a significant biostratigraphic potential for a high-resolution biostratigraphy in the peri-Mediterranean region (Western Tethys). The reticulate Nummulites in two samples from Rakhi Nala and Zinda Pir, ZP22 and RNB10, were studied and compared with those from the peri-Mediterranean region. The isolated specimens have a weak surface granulation externally, a distinct small umbonal granule (pile) and typical reticulation. The samples ZP22 and RNB10 from Zinda Pir and and Rakhi Nala sections have an average inner cross diameter of proloculus of 152.0 and 153.0 μm respectively. The reticulate Nummulites in both samples are assigned to N. hormoensis, a chrono-species characteristic for the shallow benthic zone (SBZ 18), referable to latest Bartonian-early Priabonian time interval. Since Heterostegina in peri-Mediterranean region and in Pakistan belongs to different lineages, a correlation of N. hormoensis in the studied samples with the wellestablished evolutionary scheme of Heterostegina reticulata and H.armenica lineages from the Western Tethys was not possible.


Sign in / Sign up

Export Citation Format

Share Document