thermal state
Recently Published Documents


TOTAL DOCUMENTS

1166
(FIVE YEARS 422)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 1049 ◽  
pp. 53-61
Author(s):  
Valeriy Lykhoshva ◽  
Dmitry Glushkov ◽  
Elena Reintal ◽  
Valeriy V. Savin ◽  
Ludmila Alexeyevna Savina ◽  
...  

The hydrodynamic and thermal state in the contact zone of the layers of a bimetallic product obtained by pouring liquid iron onto a solid steel billet, which changes in time and is responsible for the strength of the diffusion joint and the geometric parameters of the transition layer, has been investigated. Simplified analytical dependences, mathematical modeling data and experimental results of the liquid phase existence time in the contact zone based on research of the melt velocities during pouring and changes in the thermal field are presented. It is shown that simplified calculations data coincide in order and are close in values ​​to the calculations of mathematical modeling and experimental data, which makes it possible to use them for preliminary rough estimates by technologists and metallurgists.


Author(s):  
Orlando Miguel Espinoza-Ojeda ◽  
Elizabeth Rivera-Calderón ◽  
Paloma Tonally Sánchez-Sánchez

2022 ◽  
pp. 1-10
Author(s):  
Aidan Stansberry ◽  
Joel Harper ◽  
Jesse V. Johnson ◽  
Toby Meierbachtol

Abstract The geometry and thermal structure of western Greenland ice sheet are known to have undergone relatively substantial change over the Holocene. Evolution of the frozen and melted fractions of the bed associated with the ice-sheet retreat over this time frame remains unclear. We address this question using a thermo-mechanically coupled flowline model to simulate a 11 ka period of ice-sheet retreat in west central Greenland. Results indicate an episode of ~100 km of terminus retreat corresponded to ~16 km of upstream frozen/melted basal boundary migration. The majority of migration of the frozen area is associated with the enhancement of the frictional and strain heating fields, which are accentuated toward the retreating ice margin. The thermally active bedrock layer acts as a heat sink, tending to slow contraction of frozen-bed conditions. Since the bedrock heat flux in our region is relatively low compared to other regions of the ice sheet, the frozen region is relatively greater and therefore more susceptible to marginward changes in the frictional and strain heating fields. Migration of melted regions thus depends on both geometric changes and the antecedent thermal state of the bedrock and ice, both of which vary considerably around the ice sheet.


2022 ◽  
Vol 14 (1) ◽  
pp. 232
Author(s):  
Defu Zou ◽  
Lin Zhao ◽  
Guangyue Liu ◽  
Erji Du ◽  
Guojie Hu ◽  
...  

An accurate and detailed vegetation map is of crucial significance for understanding the spatial heterogeneity of subsurfaces, which can help to characterize the thermal state of permafrost. The absence of an alpine swamp meadow (ASM) type, or an insufficient resolution (usually km-level) to capture the spatial distribution of the ASM, greatly limits the availability of existing vegetation maps in permafrost modeling of the Qinghai-Tibet Plateau (QTP). This study generated a map of the vegetation type at a spatial resolution of 30 m on the central QTP. The random forest (RF) classification approach was employed to map the vegetation based on 319 ground-truth samples, combined with a set of input variables derived from the visible, infrared, and thermal Landsat-8 images. Validation using a train-test split (i.e., 70% of the samples were randomly selected to train the RF model, while the remaining 30% were used for validation and a total of 1000 runs) showed that the average overall accuracy and Kappa coefficient of the RF approach were 0.78 (0.68–0.85) and 0.69 (0.64–0.74), respectively. The confusion matrix showed that the overall accuracy and Kappa coefficient of the predicted vegetation map reached 0.848 (0.844–0.852) and 0.790 (0.785–0.796), respectively. The user accuracies for the ASM, alpine meadow, alpine steppe, and alpine desert were 95.0%, 83.3%, 82.4%, and 86.7%, respectively. The most important variables for vegetation type prediction were two vegetation indices, i.e., NDVI and EVI. The surface reflectance of visible and shortwave infrared bands showed a secondary contribution, and the brightness temperature and the surface temperature of the thermal infrared bands showed little contribution. The dominant vegetation in the study area is alpine steppe and alpine desert. The results of this study can provide an accurate and detailed vegetation map, especially for the distribution of the ASM, which can help to improve further permafrost studies.


Author(s):  
Riccardo Marin ◽  
Natalie Catherine Millan ◽  
Laura Kelly ◽  
Nan Liu ◽  
Emille Martinazzo Rodrigues ◽  
...  

Monitoring the thermal state of surfaces in real-time and in a contactless fashion is pivotal in several industrial applications and whenever the temperature of a device determines its functionality. The...


2022 ◽  
Vol 2155 (1) ◽  
pp. 012019
Author(s):  
V Gnyrya ◽  
Yu Gordienko ◽  
A Surayev ◽  
Yu Baklanova ◽  
P Kashaykin ◽  
...  

Abstract One of the most important stages in the development of an experimental device is to carry out a series of computational studies to substantiate the compliance of device design with the objectives of the experiment, such as the choice of test modes and the study of standard and hypothetical emergency modes of its operation. Result of these studies is the neutron-physical, thermal, strength and hydrodynamic characteristics of the structural elements of the device and working bodies. During this work, a series of neutron calculations was conducted using the MCNP6 code and thermal-physical calculations using the ANSYS software package of two configurations of the experimental device. A feature of the calculated studies is the presence of specific requirements for the thermal state of the experimental device sleeve. Namely, ensuring a predetermined temperature gradient between its ribs, which should not exceed 4°K during the reactor tests.


2022 ◽  
Vol 3 (1) ◽  
pp. 10-23 ◽  
Author(s):  
Sharon L. Smith ◽  
H. Brendan O’Neill ◽  
Ketil Isaksen ◽  
Jeannette Noetzli ◽  
Vladimir E. Romanovsky
Keyword(s):  

2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Oleksiy Liudvichenko ◽  
Oleksandr Anisin ◽  
Oleksandr Lyeshchuk ◽  
Vitaliy Shchydlovskyi

The advantages and disadvantages of methods for gallium nitride crystals production are considered. The convergence of the solution of the problem of electroresistive heating at determination of a thermal condition of the high pressure apparatus cell is investigated. The thermal state of the high pressure apparatus cell used to determine the solubility of gallium nitride in iron has been modeled and investigated. It is determined that the combined discretization with the use of triangular and quadrangular elements allows to reduce the time of solving the coupled problem of electrical and thermal conductivity under these conditions. The results of calculations are presented by steady temperature fields in various elements of the device. It was obtained that at the temperature in the cell control point of 1800 °С its axial difference in the volume of the investigated sample of iron was 62 °С , the maximum difference was 156 °С. The simulated cell configuration and the heating conditions defined for it are acceptable for experimental studies of the solubility of GaN in contact with Fe under conditions of high pressures and temperatures.


Dependability ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 3-11
Author(s):  
M. A. Tyurin ◽  
M. E. Bocharov ◽  
V. A. Vorontsov ◽  
A. V. Melnikova

Aim. Today, dynamically-loaded foundations of process equipment often prove to be oversized with significantly overestimated values of stiffness, mass and material consumption. Therefore, reducing the costs and time of construction of gas pipeline facilities, especially on permafrost, is of relevance to PJSC Gazprom. One of the primary ways of solving this problem is installing gas pumping equipment on light vented support structures. The disadvantage of such structures is the low vibration rigidity. A method [1] is proposed for improving the vibration rigidity of a foundation subjected to vibration load. The simulation aims to improve the dependability of light vented foundations by studying vibration displacements of foundations with attached reinforced concrete panels depending on the thermal state of frost soils, parameters of the attached panels and connectors. Methods. Vibration displacements of a foundation with an attached device were identified using the finite element method and the improved computational model of the foundation – GCU – soil system. Results. Computational experiments identified the vibration displacements of the foundation in the cold and warm seasons for the following cases of reinforced concrete plates attached to the foundation: symmetrical and non-symmetrical; at different distances; through connectors with different stiffness parameters; with additional weights; frozen to the ground. Conclusions were made based on the results of simulation of vibration displacements of foundations with an attached device in cold and warm seasons. Conclusion. The presented results of computational experiments aimed at improving the vibration rigidity of light foundations by using method [1] show sufficiently good indicators of reduced vibration displacements of the foundation. Thus, in the case of symmetrical connection of four reinforced concrete panels in summer, the reduction of vibration displacements is 42.4%, while increased stiffness of the connectors, attachment of additional weights and freezing of reinforced concrete panels into the ground will allow reducing the vibration displacements of the foundation up to 2.5 times. However, it should be noted, that applying the findings in the process of development of project documentation and construction of foundations requires R&D activities involving verification and comparison of the obtained results of numerical simulation with a natural experiment.


Sign in / Sign up

Export Citation Format

Share Document