scholarly journals Digit Recognition by The Random Neural Network using Supervised Learning

ICANN ’93 ◽  
1993 ◽  
pp. 946-946
Author(s):  
M. Mokhtari
2016 ◽  
Vol 30 (3) ◽  
pp. 379-402 ◽  
Author(s):  
Stelios Timotheou

The random neural network is a biologically inspired neural model where neurons interact by probabilistically exchanging positive and negative unit-amplitude signals that has superior learning capabilities compared to other artificial neural networks. This paper considers non-negative least squares supervised learning in this context, and develops an approach that achieves fast execution and excellent learning capacity. This speedup is a result of significant enhancements in the solution of the non-negative least-squares problem which regard (a) the development of analytical expressions for the evaluation of the gradient and objective functions and (b) a novel limited-memory quasi-Newton solution algorithm. Simulation results in the context of optimizing the performance of a disaster management problem using supervised learning verify the efficiency of the approach, achieving two orders of magnitude execution speedup and improved solution quality compared to state-of-the-art algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 403
Author(s):  
Xun Zhang ◽  
Lanyan Yang ◽  
Bin Zhang ◽  
Ying Liu ◽  
Dong Jiang ◽  
...  

The problem of extracting meaningful data through graph analysis spans a range of different fields, such as social networks, knowledge graphs, citation networks, the World Wide Web, and so on. As increasingly structured data become available, the importance of being able to effectively mine and learn from such data continues to grow. In this paper, we propose the multi-scale aggregation graph neural network based on feature similarity (MAGN), a novel graph neural network defined in the vertex domain. Our model provides a simple and general semi-supervised learning method for graph-structured data, in which only a very small part of the data is labeled as the training set. We first construct a similarity matrix by calculating the similarity of original features between all adjacent node pairs, and then generate a set of feature extractors utilizing the similarity matrix to perform multi-scale feature propagation on graphs. The output of multi-scale feature propagation is finally aggregated by using the mean-pooling operation. Our method aims to improve the model representation ability via multi-scale neighborhood aggregation based on feature similarity. Extensive experimental evaluation on various open benchmarks shows the competitive performance of our method compared to a variety of popular architectures.


Author(s):  
Anway Shirgaonkar ◽  
Neeraj Sahasrabudhe ◽  
Prathamesh Sandikar ◽  
Tapan Sawant ◽  
Shahid Sayyad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document