denial of service
Recently Published Documents





Riyadh Rahef Nuiaa ◽  
Selvakumar Manickam ◽  
Ali Hakem Alsaeedi ◽  
Esraa Saleh Alomari

Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), <span>and increased accuracy detection (DA).</span> The PFS model shows better accuracy to detect DRDoS attacks with 89.59%.

2022 ◽  
Vol 16 (4) ◽  
pp. 1-22
Siddharth Bhatia ◽  
Rui Liu ◽  
Bryan Hooi ◽  
Minji Yoon ◽  
Kijung Shin ◽  

Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges. In this work, we propose Midas , which focuses on detecting microcluster anomalies , or suddenly arriving groups of suspiciously similar edges, such as lockstep behavior, including denial of service attacks in network traffic data. We further propose Midas -F, to solve the problem by which anomalies are incorporated into the algorithm’s internal states, creating a “poisoning” effect that can allow future anomalies to slip through undetected. Midas -F introduces two modifications: (1) we modify the anomaly scoring function, aiming to reduce the “poisoning” effect of newly arriving edges; (2) we introduce a conditional merge step, which updates the algorithm’s data structures after each time tick, but only if the anomaly score is below a threshold value, also to reduce the “poisoning” effect. Experiments show that Midas -F has significantly higher accuracy than Midas . In general, the algorithms proposed in this work have the following properties: (a) they detects microcluster anomalies while providing theoretical guarantees about the false positive probability; (b) they are online, thus processing each edge in constant time and constant memory, and also processes the data orders-of-magnitude faster than state-of-the-art approaches; and (c) they provides up to 62% higher area under the receiver operating characteristic curve than state-of-the-art approaches.

2022 ◽  
Vol 22 (1) ◽  
pp. 1-31
Ghazale Amel Zendehdel ◽  
Ratinder Kaur ◽  
Inderpreet Chopra ◽  
Natalia Stakhanova ◽  
Erik Scheme

The growth of IoT technology, increasing prevalence of embedded devices, and advancements in biomedical technology have led to the emergence of numerous wearable health monitoring devices (WHMDs) in clinical settings and in the community. The majority of these devices are Bluetooth Low Energy (BLE) enabled. Though the advantages offered by BLE-enabled WHMDs in tracking, diagnosing, and intervening with patients are substantial, the risk of cyberattacks on these devices is likely to increase with device complexity and new communication protocols. Furthermore, vendors face risk and financial tradeoffs between speed to market and ensuring device security in all situations. Previous research has explored the security and privacy of such devices by manually testing popular BLE-enabled WHMDs in the market and generally discussed categories of possible attacks, while mostly focused on IP devices. In this work, we propose a new semi-automated framework that can be used to identify and discover both known and unknown vulnerabilities in WHMDs. To demonstrate its implementation, we validate it with a number of commercially available BLE-enabled enabled wearable devices. Our results show that the devices are vulnerable to a number of attacks, including eavesdropping, data manipulation, and denial of service attacks. The proposed framework could therefore be used to evaluate potential devices before adoption into a secure network or, ideally, during the design and implementation of new devices.

2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Due to the absence of routing initiation, the routing protocol requires a secure message transition. The key downside is that there are many current routing protocols. The big downside is the inability of the node to give a message when the attackers are routing. The key attack in the proposed routing model is Distributed Denial of Service (DDOS). The Protected Geographic Routing Protocol (SGRP) is the assured routing carried out in the proposed work. The Protected Geographic Routing Protocol (SGRP) will improve the efficiency of the transmission method by choosing a specific source node. The paper suggested that the Protected Spatial Routing Protocol (PSRP) would recognize and isolate such threats. Several modeling time estimation studies have been carried out to analyze the simulation time and the efficiency of the proposed routing technique. The proposed routing technique demonstrates the performance by calculating the Packets Delivery Ratio(PDR) and Energy consumption. The Routing protocol is used in many applications such as the Industrial Internet of Things (IoT)

2022 ◽  
Vol 19 (1) ◽  
pp. 1-23
Bang Di ◽  
Daokun Hu ◽  
Zhen Xie ◽  
Jianhua Sun ◽  
Hao Chen ◽  

Co-running GPU kernels on a single GPU can provide high system throughput and improve hardware utilization, but this raises concerns on application security. We reveal that translation lookaside buffer (TLB) attack, one of the common attacks on CPU, can happen on GPU when multiple GPU kernels co-run. We investigate conditions or principles under which a TLB attack can take effect, including the awareness of GPU TLB microarchitecture, being lightweight, and bypassing existing software and hardware mechanisms. This TLB-based attack can be leveraged to conduct Denial-of-Service (or Degradation-of-Service) attacks. Furthermore, we propose a solution to mitigate TLB attacks. In particular, based on the microarchitecture properties of GPU, we introduce a software-based system, TLB-pilot, that binds thread blocks of different kernels to different groups of streaming multiprocessors by considering hardware isolation of last-level TLBs and the application’s resource requirement. TLB-pilot employs lightweight online profiling to collect kernel information before kernel launches. By coordinating software- and hardware-based scheduling and employing a kernel splitting scheme to reduce load imbalance, TLB-pilot effectively mitigates TLB attacks. The result shows that when under TLB attack, TLB-pilot mitigates the attack and provides on average 56.2% and 60.6% improvement in average normalized turnaround times and overall system throughput, respectively, compared to the traditional Multi-Process Service based co-running solution. When under TLB attack, TLB-pilot also provides up to 47.3% and 64.3% improvement (41% and 42.9% on average) in average normalized turnaround times and overall system throughput, respectively, compared to a state-of-the-art co-running solution for efficiently scheduling of thread blocks.

2022 ◽  
Vol 54 (9) ◽  
pp. 1-33
Meriem Guerar ◽  
Luca Verderame ◽  
Mauro Migliardi ◽  
Francesco Palmieri ◽  
Alessio Merlo

A recent study has found that malicious bots generated nearly a quarter of overall website traffic in 2019 [102]. These malicious bots perform activities such as price and content scraping, account creation and takeover, credit card fraud, denial of service, and so on. Thus, they represent a serious threat to all businesses in general, but are especially troublesome for e-commerce, travel, and financial services. One of the most common defense mechanisms against bots abusing online services is the introduction of Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), so it is extremely important to understand which CAPTCHA schemes have been designed and their actual effectiveness against the ever-evolving bots. To this end, this work provides an overview of the current state-of-the-art in the field of CAPTCHA schemes and defines a new classification that includes all the emerging schemes. In addition, for each identified CAPTCHA category, the most successful attack methods are summarized by also describing how CAPTCHA schemes evolved to resist bot attacks, and discussing the limitations of different CAPTCHA schemes from the security, usability, and compatibility point of view. Finally, an assessment of the open issues, challenges, and opportunities for further study is provided, paving the road toward the design of the next-generation secure and user-friendly CAPTCHA schemes.

2022 ◽  
Vol 9 (2) ◽  
pp. 109-118
Chaminda Tennakoon ◽  
Subha Fernando ◽  

Distributed denial of service (DDoS) attacks is one of the serious threats in the domain of cybersecurity where it affects the availability of online services by disrupting access to its legitimate users. The consequences of such attacks could be millions of dollars in worth since all of the online services are relying on high availability. The magnitude of DDoS attacks is ever increasing as attackers are smart enough to innovate their attacking strategies to expose vulnerabilities in the intrusion detection models or mitigation mechanisms. The history of DDoS attacks reflects that network and transport layers of the OSI model were the initial target of the attackers, but the recent history from the cybersecurity domain proves that the attacking momentum has shifted toward the application layer of the OSI model which presents a high degree of difficulty distinguishing the attack and benign traffics that make the combat against application-layer DDoS attack a sophisticated task. Striding for high accuracy with high DDoS classification recall is key for any DDoS detection mechanism to keep the reliability and trustworthiness of such a system. In this paper, a deep learning approach for application-layer DDoS detection is proposed by using an autoencoder to perform the feature selection and Deep neural networks to perform the attack classification. A popular benchmark dataset CIC DoS 2017 is selected by extracting the most appealing features from the packet flows. The proposed model has achieved an accuracy of 99.83% with a detection rate of 99.84% while maintaining the false-negative rate of 0.17%, which has the heights accuracy rate among the literature reviewed so far.

2022 ◽  
Vol 2 ◽  
Jianting Lyu ◽  
Lianghui Sun ◽  
Xin Wang ◽  
Dai Gao

This article focuses on the consensus problem of linear multi-agent systems under denial-of-service attacks and directed switching topologies. With only intermittent communication, the leader-following consensus can be preserved by fully distributed event-triggered strategies. Theoretical analysis shows that the proposed event-triggered resilient controller guarantees the exponential convergence in the presence of denial-of-service attacks and the exclusion of Zeno behavior. Compared to the existing studies where continuous communication between neighboring agents is required, the event-triggered data reduction scheme is provided to tackle the effects of denial-of-service attacks on directed switching topology as well as to avoid continuous communication and reduce energy consumption. The obtained results can be extended to the scenario without a leader. Numerical simulations are finally given to illustrate the effectiveness of the proposed method.

2022 ◽  
Vol 3 (2) ◽  
pp. 51-55
Misbachul Munir ◽  
Ipung Ardiansyah ◽  
Joko Dwi Santoso ◽  
Ali Mustopa ◽  
Sri Mulyatun

DDoS attacks are a form of attack carried out by sending packets continuously to machines and even computer networks. This attack will result in a machine or network resources that cannot be accessed or used by users. DDoS attacks usually originate from several machines operated by users or by bots, whereas Dos attacks are carried out by one person or one system. In this study, the term to be used is the term DDoS to represent a DoS or DDoS attack. In the network world, Software Defined Network (SDN) is a promising paradigm. SDN separates the control plane from forwarding plane to improve network programmability and network management. As part of the network, SDN is not spared from DDoS attacks. In this study, we use the naïve Bayes algorithm as a method to detect DDoS attacks on the Software Defined Network network architecture

Sign in / Sign up

Export Citation Format

Share Document