Monte Carlo Simulation with Stochastic Differential Equations

Author(s):  
Rüdiger U. Seydel
2018 ◽  
Vol 64 ◽  
pp. 65-77
Author(s):  
Paul-Éric Chaudru de Raynal ◽  
Gilles Pagès ◽  
Clément Rey

The goal of this paper is to present a series of recent contributions arising in numerical probability. First we present a contribution to a recently introduced problem: stochastic differential equations with constraints in law, investigated through various theoretical and numerical viewpoints. Such a problem may appear as an extension of the famous Skorokhod problem. Then a generic method to approximate in a weak way the invariant distribution of an ergodic Feller process by a Langevin Monte Carlo simulation. It is an extension of a method originally developed for diffusions and based on the weighted empirical measure of an Euler scheme with decreasing step. Finally, we mention without details a recent development of a multilevel Langevin Monte Carlo simulation method for this type of problem.


2020 ◽  
Vol 26 (3) ◽  
pp. 193-203
Author(s):  
Shady Ahmed Nagy ◽  
Mohamed A. El-Beltagy ◽  
Mohamed Wafa

AbstractMonte Carlo (MC) simulation depends on pseudo-random numbers. The generation of these numbers is examined in connection with the Brownian motion. We present the low discrepancy sequence known as Halton sequence that generates different stochastic samples in an equally distributed form. This will increase the convergence and accuracy using the generated different samples in the Multilevel Monte Carlo method (MLMC). We compare algorithms by using a pseudo-random generator and a random generator depending on a Halton sequence. The computational cost for different stochastic differential equations increases in a standard MC technique. It will be highly reduced using a Halton sequence, especially in multiplicative stochastic differential equations.


Sign in / Sign up

Export Citation Format

Share Document