time approximation
Recently Published Documents


TOTAL DOCUMENTS

725
(FIVE YEARS 102)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Vol 68 (6) ◽  
pp. 1-34
Author(s):  
Vincent Cohen-Addad ◽  
Andreas Emil Feldmann ◽  
David Saulpic

We consider the classic Facility Location, k -Median, and k -Means problems in metric spaces of doubling dimension d . We give nearly linear-time approximation schemes for each problem. The complexity of our algorithms is Õ(2 (1/ε) O(d2) n) , making a significant improvement over the state-of-the-art algorithms that run in time n (d/ε) O(d) . Moreover, we show how to extend the techniques used to get the first efficient approximation schemes for the problems of prize-collecting k -Median and k -Means and efficient bicriteria approximation schemes for k -Median with outliers, k -Means with outliers and k -Center.


Author(s):  
Venus Lo ◽  
Huseyin Topaloglu

Problem definition: We consider the assortment optimization problem of a retailer that operates a physical store and an online store. The products that can be offered are described by their features. Customers purchase among the products that are offered in their preferred store. However, customers who purchase from the online store can first test out products offered in the physical store. These customers revise their preferences for online products based on the features that are shared with the in-store products. The full assortment is offered online, and the goal is to select an assortment for the physical store to maximize the retailer’s total expected revenue. Academic/practical relevance: The physical store’s assortment affects preferences for online products. Unlike traditional assortment optimization, the physical store’s assortment influences revenue from both stores. Methodology: We introduce a features tree to organize products by features. The nonleaf vertices on the tree correspond to features, and the leaf vertices correspond to products. The ancestors of a leaf correspond to features of the product. Customers choose among the products within their store’s assortment according to the multinomial logit model. We consider two settings; either all customers purchase online after viewing products in the physical store, or we have a mix of customers purchasing from each store. Results: When all customers purchase online, we give an efficient algorithm to find the optimal assortment to display in the physical store. With a mix of customers, the problem becomes NP-hard, and we give a fully polynomial-time approximation scheme. We numerically demonstrate that we can closely approximate the case where products have arbitrary combinations of features without a tree structure and that our fully polynomial-time approximation scheme performs remarkably well. Managerial implications: We characterize conditions under which it is optimal to display expensive products with underrated features and expose inexpensive products with overrated features.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-67
Author(s):  
Waldo Gálvez ◽  
Fabrizio Grandoni ◽  
Salvatore Ingala ◽  
Sandy Heydrich ◽  
Arindam Khan ◽  
...  

We study the two-dimensional geometric knapsack problem, in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. In this article we present a polynomial-time 17/9+ε < 1.89-approximation, which improves to 558/325+ε < 1.72 in the cardinality case. Prior results pack items into a constant number of rectangular containers that are filled via greedy strategies. We deviate from this setting and show that there exists a large profit solution where items are packed into a constant number of containers plus one L-shaped region at the boundary of the knapsack containing narrow-high items and thin-wide items. These items may interact in complex manners at the corner of the L. The best-known approximation ratio for the subproblem in the L-shaped region is 2+ε (via a trivial reduction to one-dimensional knapsack); hence, as a second major result we present a PTAS for this case that we believe might be of broader utility. We also consider the variant with rotations, where items can be rotated by 90 degrees. Again, the best-known polynomial-time approximation factor (even for the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. We present a polynomial-time (3/2+ε)-approximation for this setting, which improves to 4/3+ε in the cardinality case.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012002
Author(s):  
Mohd Syafiq M. Hanapi ◽  
Abdel-Baset M.A. Ibrahim ◽  
Rafael Julius

Abstract The generation of squeezed states of light in two guided waves Kerr nonlinear coupler (KNLC) was examined using both the analytical perturbative (AP) and the short-time approximation (STA) method. A comparative analysis between these two methods is provided. We have found that, at certain combinations of input parameters, the STA method may not be able to detect the generation of squeezed states of light in the current KNLC system. Consequently, some essential physics could be lost. On the other hand, for the AP method, all time-dependent terms are included in the mode solutions which improves its sensitivity to detect the generation of squeezed states.


Sign in / Sign up

Export Citation Format

Share Document