The First-Order Theory of the Ring of All Entire Functions

Author(s):  
Lee A. Rubel ◽  
James E. Colliander
2019 ◽  
Vol 84 (3) ◽  
pp. 1194-1214
Author(s):  
JAVIER UTRERAS

AbstractWe study the first-order theory of polynomial rings over a GCD domain and of the ring of formal entire functions over a non-Archimedean field in the language $\{ 1, + , \bot \}$. We show that these structures interpret the first-order theory of the semi-ring of natural numbers. Moreover, this interpretation depends only on the characteristic of the original ring, and thus we obtain uniform undecidability results for these polynomial and entire functions rings of a fixed characteristic. This work enhances results of Raphael Robinson on essential undecidability of some polynomial or formal power series rings in languages that contain no symbols related to the polynomial or power series ring structure itself.


2021 ◽  
pp. 104745
Author(s):  
Albert Garreta ◽  
Robert D. Gray

Computability ◽  
2019 ◽  
Vol 8 (3-4) ◽  
pp. 347-358
Author(s):  
Matthew Harrison-Trainor

2015 ◽  
Vol 57 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Peter Franek ◽  
Stefan Ratschan ◽  
Piotr Zgliczynski

1990 ◽  
Vol 55 (2) ◽  
pp. 626-636
Author(s):  
John T. Baldwin

AbstractLet T be a complete countable first order theory and λ an uncountable cardinal. Theorem 1. If T is not superstable, T has 2λ resplendent models of power λ. Theorem 2. If T is strictly superstable, then T has at least min(2λ, ℶ2) resplendent models of power λ. Theorem 3. If T is not superstable or is small and strictly superstable, then every resplendent homogeneous model of T is saturated. Theorem 4 (with Knight). For each μ ∈ ω ∪ {ω, 2ω} there is a recursive theory in a finite language which has μ resplendent models of power κ for every infinite κ.


Sign in / Sign up

Export Citation Format

Share Document