circular plates
Recently Published Documents


TOTAL DOCUMENTS

1669
(FIVE YEARS 125)

H-INDEX

53
(FIVE YEARS 4)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Robin Singh ◽  
Neeraj Dhiman ◽  
Mohammad Tamsir

Abstract Mathematical model to account for non-homogeneity of plate material is designed, keeping in mind all the physical aspects, and analyzed by applying quintic spline technique for the first time. This method has been applied earlier for other geometry of plates which shows its utility. Accuracy and versatility of the technique are established by comparing with the well-known existing results. Effect of quadratic thickness variation, an exponential variation of non-homogeneity in the radial direction, and variation in density; for the three different outer edge conditions namely clamped, simply supported and free have been computed using MATLAB for the first three modes of vibration. For all the three edge conditions, normalized transverse displacements for a specific plate have been presented which shows the shiftness of nodal radii with the effect of taperness.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Saira Javed ◽  
F. H. H. Al Mukahal

This research is based on higher-order shear deformation theory to analyse the free vibration of composite annular circular plates using the spline approximation technique. Equilibrium equations are derived, and differential equations in terms of displacement and rotational functions are obtained. Cubic or quantic spline is used to approximate the displacement and rotational functions depending upon the order of these functions. A generalized eigenvalue problem is obtained and solved numerically for eigenfrequency parameter and associated eigenvector of spline coefficients. Frequency of annular circular plates with different numbers of layers with each layer consisting of different materials is analysed. The effect of geometric and material parameters on frequency value is investigated for simply supported condition. A comparative study with existing results narrates the validity of the present results. Graphs and tables depict the obtained results. Some figures and graphs are drawn by using Autodesk Maya and Matlab software.


Author(s):  
A. Zeeshan ◽  
M. B. Arain ◽  
M. M. Bhatti ◽  
F. Alzahrani ◽  
O. Anwar Bég

Modern biomedical and tribological systems are increasingly deploying combinations of nanofluids and bioconvecting microorganisms which enable improved control of thermal management. Motivated by these developments, in this study, a new mathematical model is developed for the combined nanofluid bioconvection axisymmetric squeezing flow between rotating circular plates (an important configuration in, for example, rotating bioreactors and lubrication systems). The Buongiorno two-component nanoscale model is deployed, and swimming gyrotactic microorganisms are considered which do not interact with the nanoparticles. Thermal radiation is also included, and a Rosseland diffusion flux approximation is utilized. Appropriate similarity transformations are implemented to transform the nonlinear, coupled partial differential conservation equations for mass, momentum, energy, nanoparticle species and motile microorganism species under suitable boundary conditions from a cylindrical coordinate system into a dimensionless nonlinear ordinary differential boundary value problem. An efficient scheme known as differential transform method (DTM) combined with Padé-approximations is then applied to solve the emerging nonlinear similarity equations. The impact of different non-dimensional parameters i.e. squeezing Reynolds number, rotational Reynolds number, Prandtl number, thermophoresis parameter, Brownian dynamics parameter, thermal radiation parameter, Schmidt number, bioconvection number and Péclet number on velocity, temperature, nanoparticle concentration and motile gyrotactic microorganism density number distributions is computed and visualized graphically. The torque effects on both plates, i.e. the lower and the upper plate, are also determined. From the graphical results, it is seen that momentum in the squeezing regime is suppressed clearly as the upper disk approaches the lower disk. This inhibits the axial flow and produces axial flow retardation. Similarly, by enhancing the value of squeezing Reynolds number, the tangential velocity distribution also decreases. More rigorous squeezing clearly therefore also inhibits tangential momentum development in the regime and leads to tangential flow deceleration. Tables are also provided for multiple values of flow parameters. The numerical values obtained by DTM-Padé computation show very good agreement with shooting quadrature. DTM-Padé is shown to be a precise and stable semi-numerical methodology for studying rotating multi-physical flow problems. Radiative heat transfer has an important influence on the transport characteristics. When radiation is neglected, different results are obtained. It is important therefore to include radiative flux in models of rotating bioreactors and squeezing lubrication dual disk damper technologies since high temperatures associated with radiative flux can impact significantly on combined nanofluid bioconvection which enables more accurate prediction of actual thermofluidic characteristics. Corrosion and surface degradation effects may therefore be mitigated in designs.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Reeta Bhardwaj ◽  
Amit Sharma ◽  
Sudeshna Ghosh ◽  
Naveen Mani ◽  
Kamal Kumar

An analysis was carried out to investigate the time period of the thermally induced vibration of clamped and simply supported circular plates with circular variation both in thickness and density. Prior to this study, the variations considered were either linear, quadratic, parabolic, or exponential in nature. To study thermal effect, one-dimensional linear temperature variation on the plates is taken into consideration. Rayleigh–Ritz method is applied to compute the time period of the first three modes of vibration for both plates by varying tapering parameter, thermal gradient, and density. Convergence study of frequency modes for both plates conducted suggests that the convergence rate in case of circular variation is faster than the other studies done. A comparison of time period with the available published results is done. The comparison done concludes that time period obtained in the present study by varying thermal gradient and tapering parameter is found to be less than the other studies done for the same set of parameters. This study helped to establish the fact that, by using circular variation in plate parameters, we can get less time period of frequency modes in comparison to other variations considered till date.


AIP Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 125009
Author(s):  
Haijun Liu ◽  
Minghui Dai ◽  
Xiaoqing Tian ◽  
Shan Chen ◽  
Fangfang Dong ◽  
...  

Author(s):  
Manouchehr Panah ◽  
AR Khorshidvand ◽  
SM Khorsandijou ◽  
Mohsen Jabbari

In functionally graded saturated poroelastic circular plates with immovable simply supported and clamped rims, the axisymmetric nonlinear bending under transverse thermo-mechanical loading has been parametrically studied and compared with the axisymmetric postbuckling and nonlinear bending under thermal loading. Based on the classical plate theory, Love–Kirchhoff hypotheses and Sander’s assumptions, the general coupled nonlinear radial and transverse equilibrium equations, central continuity, symmetry and boundary conditions has been derived in ordinary and state-spatial forms. The corresponding difference equations have been achieved by using the generalized differential quadrature method. The equations have been assembled and numerically solved by using the Newton–Raphson iterative algorithm. The effects of the mechanical and thermal loads, pore distribution type, porosity parameter, Skempton’s coefficient, and thickness and boundary condition type on the behavior of the deflection, whether caused by thermo-mechanical bending, thermal postbuckling, or thermal bending, have been investigated in detail. From the parametric study, a novel quantity determining bending behavior has been found. The axisymmetric themo-mechanical nonlinear bending deflection is inversely and nonlinearly proportional to thermal load when the quantity is greater than a critical value and is nonlinearly proportional to thermal load when the quantity is less than a critical value. It was verified that the plate behavior complies with the general rules known for FG saturated poroelastic circular plates and with those known for metal–ceramic functionally graded circular plates whose governing equations are mathematically analogous to those of the current research.


Author(s):  
J. Lu ◽  
X. Hua ◽  
C. Chiu ◽  
X. Zhang ◽  
S. Li ◽  
...  

The porous material is an emerging lightweight material, which is able to reduce structural weight and also keeps the superiority of the structure. Therefore, this work is devoted to the investigation of the functionally graded porous (FGP) annular and circular plates with general boundary conditions. The unified modeling method is proposed by combining the first-order shear deformation theory, the virtual spring technology, the multi-segment partition method, and the semi-analysis Rayleigh–Ritz approach. Afterwards, the convergency and correctness of the proposed method are verified, respectively. The frequency parameters, modal shapes, and forced vibration responses are uniformly calculated based on the proposed method. Finally, the dynamic analyses of the FGP annular and circular plates with different parameters, such as the porosity distribution types, porosity ratios, boundary condition types, geometry parameters, and load types, are conducted in detail. It is found that the reasonable porous design is able to keep the dynamic stability of the structure under different parameter variations.


Sign in / Sign up

Export Citation Format

Share Document