scholarly journals Quasi-decidability of a Fragment of the First-Order Theory of Real Numbers

2015 ◽  
Vol 57 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Peter Franek ◽  
Stefan Ratschan ◽  
Piotr Zgliczynski
1990 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Mark Nadel ◽  
Jonathan Stavi

Let T1 be the complete first-order theory of the additive group of the integers with 1 as distinguished element (in symbols, T1 = Th(Z, +, 1)). In this paper we prove that all models of T1 are ℵ0-homogeneous (§2), classify them (and lists of elements in them) up to isomorphism or L∞κ-equivalence (§§3 and 4) and show that they may be as complex as arbitrary sets of real numbers from the point of view of admissible set theory (§5). The results of §§2 and 5 together show that while the Scott heights of all models of T1 are ≤ ω (by ℵ0-homogeneity) their HYP-heights form an unbounded subset of the cardinal .In addition to providing this unusual example of the relation between Scott heights and HYP-heights, the theory T1 has served (using the homogeneity results of §2) as an example for certain combinations of properties that people had looked for in stability theory (see end of §4). In §6 it is shown that not all models of T = Th(Z, +) are ℵ0-homogeneous, so that the availability of the constant for 1 is essential for the result of §2.The two main results of this paper (2.2 and essentially Theorem 5.3) were obtained in the summer of 1979. Later we learnt from Victor Harnik and Julia Knight that T1 is of some interest for stability theory, and were encouraged to write up our proofs.During 1982/3 we improved the proofs and added some results.


2007 ◽  
Vol 17 (1) ◽  
pp. 99-127 ◽  
Author(s):  
ASSIA MAHBOUBI

The Coq system is a Curry–Howard based proof assistant. Therefore, it contains a full functional, strongly typed programming language, which can be used to enhance the system with powerful automation tools through the implementation of reflexive tactics. We present the implementation of a cylindrical algebraic decomposition algorithm within the Coq system, whose certification leads to a proof producing decision procedure for the first-order theory of real numbers.


Computability ◽  
2019 ◽  
Vol 8 (3-4) ◽  
pp. 347-358
Author(s):  
Matthew Harrison-Trainor

1990 ◽  
Vol 55 (2) ◽  
pp. 626-636
Author(s):  
John T. Baldwin

AbstractLet T be a complete countable first order theory and λ an uncountable cardinal. Theorem 1. If T is not superstable, T has 2λ resplendent models of power λ. Theorem 2. If T is strictly superstable, then T has at least min(2λ, ℶ2) resplendent models of power λ. Theorem 3. If T is not superstable or is small and strictly superstable, then every resplendent homogeneous model of T is saturated. Theorem 4 (with Knight). For each μ ∈ ω ∪ {ω, 2ω} there is a recursive theory in a finite language which has μ resplendent models of power κ for every infinite κ.


Sign in / Sign up

Export Citation Format

Share Document