Operators on Hilbert Space and C*-Algebras

Author(s):  
Ronald G. Douglas
Keyword(s):  
2005 ◽  
Vol 97 (1) ◽  
pp. 73 ◽  
Author(s):  
Kengo Matsumoto

A $\lambda$-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a $\lambda$-graph system $\mathfrak{L}$ by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with $\mathfrak{L}$. We also introduce a new irreducible condition on $\mathfrak{L}$ under which the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite.


2005 ◽  
Vol 79 (3) ◽  
pp. 391-398
Author(s):  
Kazunori Kodaka

AbstractLet A be a C*-algebra and K the C*-algebra of all compact operators on a countably infinite dimensional Hilbert space. In this note, we shall show that there is an isomorphism of a semigroup of equivalence classes of certain partial automorphisms of A ⊗ K onto a semigroup of equivalence classes of certain countably generated A-A-Hilbert bimodules.


1989 ◽  
Vol 41 (6) ◽  
pp. 1021-1089 ◽  
Author(s):  
N. Christopher Phillips

In topology, the representable K-theory of a topological space X is defined by the formulas RK0(X) = [X,Z x BU] and RKl(X) = [X, U], where square brackets denote sets of homotopy classes of continuous maps, is the infinite unitary group, and BU is a classifying space for U. (Note that ZxBU is homotopy equivalent to the space of Fredholm operators on a separable infinite-dimensional Hilbert space.) These sets of homotopy classes are made into abelian groups by using the H-group structures on Z x BU and U. In this paper, we give analogous formulas for the representable K-theory for α-C*-algebras defined in [20].


1985 ◽  
Vol 37 (4) ◽  
pp. 664-681 ◽  
Author(s):  
Zoltán Magyar ◽  
Zoltán Sebestyén

The theory of noncommutative involutive Banach algebras (briefly Banach *-algebras) owes its origin to Gelfand and Naimark, who proved in 1943 the fundamental representation theorem that a Banach *-algebra with C*-condition(C*)is *-isomorphic and isometric to a norm-closed self-adjoint subalgebra of all bounded operators on a suitable Hilbert space.At the same time they conjectured that the C*-condition can be replaced by the B*-condition.(B*)In other words any B*-algebra is actually a C*-algebra. This was shown by Glimm and Kadison [5] in 1960.


Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2425-2433
Author(s):  
Runliang Jiang

Let B be a C*-algebra, E be a Hilbert B module and L(E) be the set of adjointable operators on E. Let A be a non-zero C*-subalgebra of L(E). In this paper, some new kinds of irreducibilities of A acting on E are introduced, which are all the generalizations of those associated to Hilbert spaces. The difference between these irreducibilities are illustrated by a number of counterexamples. It is concluded that for a full Hilbert B-module, these irreducibilities are all equivalent if and only if the underlying C*-algebra B is isomorphic to the C*-algebra of all compact operators on a Hilbert space.


1978 ◽  
Vol 21 (2) ◽  
pp. 143-147
Author(s):  
S. J. Cho

Let be a separable complex infinite dimensional Hilbert space, the algebra of bounded operators in the ideal of compact operators, and the quotient map. Throughout this paper A denotes a separable nuclear C*-algebra with unit. An extension of A is a unital *-monomorphism of A into . Two extensions τ1 and τ2 are strongly (weakly) equivalent if there exists a unitary (Fredholm partial isometry) U in such thatfor all a in A.


2020 ◽  
pp. 1-12
Author(s):  
BHARAT TALWAR ◽  
RANJANA JAIN

Abstract For a locally compact Hausdorff space X and a C*-algebra A with only finitely many closed ideals, we discuss a characterization of closed ideals of C0(X,A) in terms of closed ideals of A and a class of closed subspaces of X. We further use this result to prove that a closed ideal of C0(X)⊗minA is a finite sum of product ideals. We also establish that for a unital C*-algebra A, C0(X,A) has the centre-quotient property if and only if A has the centre-quotient property. As an application, we characterize the closed Lie ideals of C0(X,A) and identify all the closed Lie ideals of HC0(X)⊗minB(H), H being a separable Hilbert space.


1997 ◽  
Vol 49 (6) ◽  
pp. 1188-1205 ◽  
Author(s):  
Michael J. Leen

AbstractIn this paper we consider the following problem: Given a unital C*- algebra A and a collection of elements S in the identity component of the invertible group of A, denoted inv0(A), characterize the group of finite products of elements of S. The particular C*-algebras studied in this paper are either unital purely infinite simple or of the form (A ⊗ K)+, where A is any C*-algebra and K is the compact operators on an infinite dimensional separable Hilbert space. The types of elements used in the factorizations are unipotents (1+ nilpotent), positive invertibles and symmetries (s2 = 1). First we determine the groups of finite products for each collection of elements in (A ⊗ K)+. Then we give upper bounds on the number of factors needed in these cases. The main result, which uses results for (A ⊗ K)+, is that for A unital purely infinite and simple, inv0(A) is generated by each of these collections of elements.


1987 ◽  
Vol 29 (1) ◽  
pp. 93-97 ◽  
Author(s):  
C.-S. Lin

Two numerical characterizations of commutativity for C*-algebra (acting on the Hilbert space H) were given in [1]; one used the norms of self-adjoint operators in (Theorem 2), and the other the numerical index of (Theorem 3). In both cases the proofs were based on the result of Kaplansky which states that if the only nilpotent operator in is 0, then is commutative ([2] 2.12.21, p. 68). Of course the converse also holds.


2002 ◽  
Vol 13 (09) ◽  
pp. 1009-1025 ◽  
Author(s):  
CHI-KEUNG NG

In this paper, we study the duality theory of Hopf C*-algebras in a general "Hilbert-space-free" framework. Our particular interests are the "full duality" and the "reduced duality". In order to study the reduced duality, we define the interesting notion of Fourier algebra of a general Hopf C*-algebra. This study of reduced duality and Fourier algebra is found to be useful in the study of other aspects of Hopf C*-algebras (see e.g. [12–14]).


Sign in / Sign up

Export Citation Format

Share Document