The Harnack Inequality for Singular Equations

Author(s):  
Emmanuele DiBenedetto ◽  
Ugo Gianazza ◽  
Vincenzo Vespri
Author(s):  
Verena Bögelein ◽  
Andreas Heran ◽  
Leah Schätzler ◽  
Thomas Singer

AbstractIn this article we prove a Harnack inequality for non-negative weak solutions to doubly nonlinear parabolic equations of the form $$\begin{aligned} \partial _t u - {{\,\mathrm{div}\,}}{\mathbf {A}}(x,t,u,Du^m) = {{\,\mathrm{div}\,}}F, \end{aligned}$$ ∂ t u - div A ( x , t , u , D u m ) = div F , where the vector field $${\mathbf {A}}$$ A fulfills p-ellipticity and growth conditions. We treat the slow diffusion case in its full range, i.e. all exponents $$m > 0$$ m > 0 and $$p>1$$ p > 1 with $$m(p-1) > 1$$ m ( p - 1 ) > 1 are included in our considerations.


2019 ◽  
Vol 295 (3-4) ◽  
pp. 1751-1769 ◽  
Author(s):  
Dominik Dier ◽  
Jukka Kemppainen ◽  
Juhana Siljander ◽  
Rico Zacher

2008 ◽  
Vol 69 (12) ◽  
pp. 4550-4566 ◽  
Author(s):  
F. Cuccu ◽  
E. Giarrusso ◽  
G. Porru

2015 ◽  
Vol 115 ◽  
pp. 89-102
Author(s):  
Santi Tasena ◽  
Laurent Saloff-Coste ◽  
Sompong Dhompongsa
Keyword(s):  

1985 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Murali Rao

Let D be a domain in Euclidean space of d dimensions and K a compact subset of D. The well known Harnack inequality assures the existence of a positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for all x and y in K and all positive harmonic functions u on D. In this we obtain a global integral version of this inequality under geometrical conditions on the domain. The result is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere condition—stated in Section 2. If u is harmonic in D with continuous boundary data f thenwhere ds is the d — 1 dimensional Hausdorff measure on the boundary ժD. A large class of domains satisfy this condition. Examples are C2-domains, convex domains, etc.


Sign in / Sign up

Export Citation Format

Share Document