Regular and singular points of algebraic varieties

Author(s):  
Ernst Kunz
1978 ◽  
Vol 72 ◽  
pp. 93-101 ◽  
Author(s):  
Paolo Valabrega ◽  
Giuseppe Valla

Hironaka, in his paper [H1] on desingularization of algebraic varieties over a field of characteristic 0, to deal with singular points develops the algebraic apparatus of the associated graded ring, introducing standard bases of ideals, numerical characters ν* and τ* etc. Such a point of view involves a deep investigation of the ideal b* generated by the initial forms of the elements of an ideal A of a local ring, with respect to a certain ideal a.


2014 ◽  
Vol 150 (3) ◽  
pp. 344-368
Author(s):  
Alexandru Dimca ◽  
Morihiko Saito

AbstractWe prove formulas for the number of Jordan blocks of the maximal size for local monodromies of one-parameter degenerations of complex algebraic varieties where the bound of the size comes from the monodromy theorem. In the case when the general fibers are smooth and compact, the proof calculates some part of the weight spectral sequence of the limit mixed Hodge structure of Steenbrink. In the singular case, we can prove a similar formula for the monodromy on the cohomology with compact supports, but not on the usual cohomology. We also show that the number can really depend on the position of singular points in the embedded resolution, even in the isolated singularity case, and hence there are no simple combinatorial formulas using the embedded resolution in general.


1978 ◽  
Vol 3 ◽  
pp. 381-386 ◽  
Author(s):  
F. Hardouin ◽  
G. Sigaud ◽  
M.-F. Achard ◽  
H. Gasparoux
Keyword(s):  

1988 ◽  
Vol 154 (3) ◽  
pp. 525 ◽  
Author(s):  
V.P. Antropov ◽  
Valentin G. Vaks ◽  
M.I. Katsnel'son ◽  
V.G. Koreshkov ◽  
A.I. Likhtenshtein ◽  
...  

Author(s):  
Claire Voisin

This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.


2006 ◽  
Vol 26 (Supplement2) ◽  
pp. 237-240
Author(s):  
Sinzaburo UMEDA ◽  
Shinji SHIGEYAMA ◽  
Wen-Jei YANG

2010 ◽  
Vol 14 (1) ◽  
pp. 29-56 ◽  
Author(s):  
Marcellino Gaudenzi ◽  
Antonino Zanette ◽  
Maria Antonietta Lepellere

2021 ◽  
Vol 16 ◽  
pp. 1467-1479
Author(s):  
Qihao Yin ◽  
Jianjiang Feng ◽  
Jiwen Lu ◽  
Jie Zhou

Sign in / Sign up

Export Citation Format

Share Document