band structure
Recently Published Documents


TOTAL DOCUMENTS

9274
(FIVE YEARS 1062)

H-INDEX

180
(FIVE YEARS 20)

2022 ◽  
Vol 429 ◽  
pp. 132217
Author(s):  
Shumin Li ◽  
Fan Wu ◽  
Rongbin Lin ◽  
Jin Wang ◽  
Chunxia Li ◽  
...  

2022 ◽  
Author(s):  
Nalin Vilochan Mishra ◽  
Ravi Solanki ◽  
Harshit Kansal ◽  
Aditya S Medury

<div>Ultra-thin body (UTB) devices are being used in many electronic applications operating over a wide range of temperatures. The electrostatics of these devices depends on the band structure of the channel material, which varies with temperature as well as channel thickness. The semi-empirical tight binding (TB) approach is widely used for calculating channel thickness dependent band structure of any material, at a particular temperature, where TB parameters are defined. For elementary semiconductors like Si, Ge and compound semiconductors like GaAs, these TB parameters are generally defined at only 0 K and 300 K. This limits the ability of the TB approach to simulate the electrostatics of these devices at any other intermediate temperatures.</div><div>In this work, we analyze the variation of band structure for Si, Ge and GaAs over different channel thicknesses at 0 K and 300 K (for which TB parameters are available), and show that the band curvature at the band minima has minor variation with temperature, whereas the change of band gap significantly affects the channel electrostatics. Based on this finding, we propose an approach to simulate the electrostatics of UTB devices, at any temperature between 0 K and 300 K, using TB parameters defined at 0 K, along with a suitable channel thickness and temperature dependent band gap correction. </div>


2022 ◽  
Vol 131 (2) ◽  
pp. 023101
Author(s):  
Junsong Liu ◽  
Feng Tian ◽  
Dengkui Wang ◽  
Dan Fang ◽  
Xuan Fang ◽  
...  

2022 ◽  
Author(s):  
Nalin Vilochan Mishra ◽  
Ravi Solanki ◽  
Harshit Kansal ◽  
Aditya S Medury

<div>Ultra-thin body (UTB) devices are being used in many electronic applications operating over a wide range of temperatures. The electrostatics of these devices depends on the band structure of the channel material, which varies with temperature as well as channel thickness. The semi-empirical tight binding (TB) approach is widely used for calculating channel thickness dependent band structure of any material, at a particular temperature, where TB parameters are defined. For elementary semiconductors like Si, Ge and compound semiconductors like GaAs, these TB parameters are generally defined at only 0 K and 300 K. This limits the ability of the TB approach to simulate the electrostatics of these devices at any other intermediate temperatures.</div><div>In this work, we analyze the variation of band structure for Si, Ge and GaAs over different channel thicknesses at 0 K and 300 K (for which TB parameters are available), and show that the band curvature at the band minima has minor variation with temperature, whereas the change of band gap significantly affects the channel electrostatics. Based on this finding, we propose an approach to simulate the electrostatics of UTB devices, at any temperature between 0 K and 300 K, using TB parameters defined at 0 K, along with a suitable channel thickness and temperature dependent band gap correction. </div>


2022 ◽  
Author(s):  
Yogendra Limbu ◽  
Gopi Chandra Kaphle ◽  
Alok Lal Karn ◽  
Niraj Kumar Shah ◽  
Durga Paudyal

From first principles electronic structure calculations, we unravel the evolution of structural, electronic, and magnetic properties of pristine, defected, and strained titanium nitride MXene with different functional groups (-F, -O, -H, and -OH). The formation and cohesive energies reveal their chemical stability. The MAX phase and defect free functionalized MXenes are metallic except for oxygen terminated (Ti 2 NO 2 ) one which is 100% spin polarized half-metallic ferromagnet. The spin-orbit coupling significantly influences the bare MXene (Ti 2 N) to exhibit Dirac topology and band inversion near the high symmetry directions and Fermi level. The strain effect sways the Fermi level thereby shifting it toward lower energy state under compression and toward higher energy state under tensile strain in Ti 2 NH 2 . The Ti 2 NO 2 exhibits exotic electronic structure and magnetic states not only in pristine but also in strained and defected structures. Its half-metallic nature changes to semi-metallic under 1% compression and it is completely destroyed under 2% compression. In single vacancy defect, its band structure remarkably transforms from half-metallic to semi-conducting with large band gap in 12.5% Ti, weakly semi-conducting in 5.5% Ti, and semi-metallic in 12.5% O. The 25% N defect changes it’s half-metallic characteristic to metallic. Further, the 12.5% Co substitution preserves it’s half-metallic character, whereas Mn substitution allows it to convert half-metallic characteristic into weak semi-metallic characteristic preserving ferromagnetism. However, Cr substitution converts half-metallic ferromagnetic state to half-metallic anti-ferromagnetic state. The understanding made here on collective structural stability, and electronic band structure, and magnetic phenomena in novel 2D Ti 2 N derived MXenes open up their possibility in designing them for synthesis and thereby taking to applications.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Seungmin Nam ◽  
Dahee Wang ◽  
Gyubin Lee ◽  
Su Seok Choi

Abstract Chiral photonic-band structure provides technical benefits in the form of a self-assembled helical structure and further functional wavelength tunability that exploits helical deformation according to pitch changes. The stopband wavelength control of the chiral photonic-band structure can be obtained by individual electrical methods or mechanical stretching deformation approaches. However, research on combined electric control of stretchable chiral photonic-band wavelength control while ensuring optical stability during the tuning process has remained limited till now. In this study, using the hybrid structure of elastomeric mesogenic chiral photonic gels (CPGs) with an electrically controlled dielectric soft actuator, we report the first observation of electrically stretchable CPGs and their electro-mechano-optical behaviors. The reliable wavelength tuning of a CPG to a broadband wavelength of ∼171 nm changed with high optical stability and repeated wavelength transitions of up to 100 times. Accordingly, for the first time, electrical wavelength tuning method of stretchable chiral liquid crystal photonicband structure was investigated.


Sign in / Sign up

Export Citation Format

Share Document