Time series forecasting and text generation with recurrent neural networks

2020 ◽  
pp. 203-239
Author(s):  
Juan De Dios Santos Rivera
Author(s):  
Eugeny Yu. Shchetinin

Time Series Forecasting has always been a very important area of research in many domains because many different types of data are stored as time series. Given the growing availability of data and computing power in the recent years, Deep Learning has become a fundamental part of the new generation of Time Series Forecasting models, obtaining excellent results.As different time series problems are studied in many different fields, a large number of new architectures have been developed in recent years. This has also been simplified by the growing availability of open source frameworks, which make the development of new custom network components easier and faster.In this paper three different Deep Learning Architecture for Time Series Forecasting are presented: Recurrent Neural Networks (RNNs), that are the most classical and used architecture for Time Series Forecasting problems; Long Short-Term Memory (LSTM), that are an evolution of RNNs developed in order to overcome the vanishing gradient problem; Gated Recurrent Unit (GRU), that are another evolution of RNNs, similar to LSTM.The article is devoted to modeling and forecasting the cost of international air transportation in a pandemic using deep learning methods. The author builds time series models of the American Airlines (AAL) stock prices for a selected period using LSTM, GRU, RNN recurrent neural networks models and compare the accuracy forecast results.


2018 ◽  
Vol 30 (11) ◽  
pp. 2855-2881 ◽  
Author(s):  
Yingyi Chen ◽  
Qianqian Cheng ◽  
Yanjun Cheng ◽  
Hao Yang ◽  
Huihui Yu

Analysis and forecasting of sequential data, key problems in various domains of engineering and science, have attracted the attention of many researchers from different communities. When predicting the future probability of events using time series, recurrent neural networks (RNNs) are an effective tool that have the learning ability of feedforward neural networks and expand their expression ability using dynamic equations. Moreover, RNNs are able to model several computational structures. Researchers have developed various RNNs with different architectures and topologies. To summarize the work of RNNs in forecasting and provide guidelines for modeling and novel applications in future studies, this review focuses on applications of RNNs for time series forecasting in environmental factor forecasting. We present the structure, processing flow, and advantages of RNNs and analyze the applications of various RNNs in time series forecasting. In addition, we discuss limitations and challenges of applications based on RNNs and future research directions. Finally, we summarize applications of RNNs in forecasting.


Sign in / Sign up

Export Citation Format

Share Document