Web Performance Optimization Case Study

Author(s):  
Shailesh Kumar Shivakumar
2014 ◽  
Vol 29 ◽  
pp. 1113-1122 ◽  
Author(s):  
Vítor Schwambach ◽  
Sébastien Cleyet-Merle ◽  
Alain Issard ◽  
Stéphane Mancini

2017 ◽  
Vol 9 (1) ◽  
pp. 75
Author(s):  
K. S. Shailesh ◽  
P. V. Suresh

The performance of web applications is of paramount importance as it can impact end-user experience and the business revenue. Web Performance Optimization (WPO) deals with front-end performance engineering. Web performance would impact customer loyalty, SEO, web search ranking, SEO, site traffic, repeat visitors and overall online revenue. In this paper we have conducted the survey of state of the art tools, techniques, methodologies of various aspects of web performance optimization. We have identified key web performance patterns and proposed novel web performance driven development framework. We have elaborated on various techniques related to different phases of web performance driven development framework.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Zhang ◽  
Daniel Jian Sun ◽  
Alexandra Kondyli

Operational performance optimization of signalized intersections is one of the most important tasks for traffic engineers and researchers. To compensate for the limitations of practical implementation, simulation software packages have been widely used to evaluate different optimization strategies and thus to improve the efficiency of the intersections as well as the entire network. However, for the existing optimization studies on signalized intersections, the relationships among various optimization measures and the combination of strategies have not been fully investigated. In this paper, uniform design experimentation was introduced to combine different optimization measures into strategies and achieve the minimum time cost in model construction. VISSIM software package was then calibrated and used to evaluate various optimization strategies and identify the one with the best measurement of performance, namely, control delay at the signalized intersection. By taking a representative congested intersection in Shanghai as a case study, the optimal strategy was identified to reduce the overall control delay by 27.3%, which further verified the modeling capability of the proposed method.


2013 ◽  
Vol 52 (02) ◽  
pp. 101-111 ◽  
Author(s):  
Kamran Jorshari ◽  
Brendan O'Hara ◽  
Ramsey Jones

Author(s):  
Stephen K. Storm ◽  
Richard F. Storm ◽  
Daniel S. Storm ◽  
Sammy Tuzenew ◽  
Adam McClellan

Pulverizer performance optimization is the first step to a successful combustion optimization program and the inter-relationships of the pulverizers must be considered when attempting to optimize combustion, overall unit performance, operability, reliability, and capacity. Pulverizer capacity seems to be an industry challenge while many units today are undergoing drastic fuel changes. Considering there seems to be a huge disconnect when correlating mill performance with such issues as fuel line distribution, heat rate, NOx and environmental control equipment performance, it is the intent of this technical paper to provide better understanding of how mechanical optimization & tuning of the pulverizers can yield overall improved plant performance. Low NOx firing and/or optimization of the burner belt combustion with a limited amount of furnace residence time is absolutely essential to optimizing plant performance. For example, when pulverizer performance is poor, it is also often related to not only high furnace exit gas temperatures, increased slagging and/or high LOI, but also degrading electrostatic precipitator (ESP) performance from the coarse particle ash. Furthermore, reliability of the boiler (ie. tube leaks, fouling, and slagging) can also be impacted negatively by secondary combustion and consequent super heater and re-heater tube metals overheating and/or wall wastage often occurs from non-optimized fuel distribution being delivered from the pulverizers. Whether the reason for improving mill performance is for the aforementioned items and/or perhaps simply to reduce power generation costs with improved fuels flexibility, the purpose of this case study is to review the basics of vertical spindle mill performance improvements. The data used to support this paper is from a compilation of actual field testing & tuning results. Furthermore, Storm Technologies, Inc. (STI) suggests the aforementioned steps as an effective approach to optimization.


Sign in / Sign up

Export Citation Format

Share Document