end user
Recently Published Documents


TOTAL DOCUMENTS

5347
(FIVE YEARS 1374)

H-INDEX

66
(FIVE YEARS 10)

2022 ◽  
Vol 29 (1) ◽  
pp. 1-70
Author(s):  
Radu-Daniel Vatavu ◽  
Jacob O. Wobbrock

We clarify fundamental aspects of end-user elicitation, enabling such studies to be run and analyzed with confidence, correctness, and scientific rigor. To this end, our contributions are multifold. We introduce a formal model of end-user elicitation in HCI and identify three types of agreement analysis: expert , codebook , and computer . We show that agreement is a mathematical tolerance relation generating a tolerance space over the set of elicited proposals. We review current measures of agreement and show that all can be computed from an agreement graph . In response to recent criticisms, we show that chance agreement represents an issue solely for inter-rater reliability studies and not for end-user elicitation, where it is opposed by chance disagreement . We conduct extensive simulations of 16 statistical tests for agreement rates, and report Type I errors and power. Based on our findings, we provide recommendations for practitioners and introduce a five-level hierarchy for elicitation studies.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-27
Author(s):  
Zhenyu Fan ◽  
Wang Yang ◽  
Fan Wu ◽  
Jing Cao ◽  
Weisong Shi

Different from cloud computing, edge computing moves computing away from the centralized data center and closer to the end-user. Therefore, with the large-scale deployment of edge services, it becomes a new challenge of how to dynamically select the appropriate edge server for computing requesters based on the edge server and network status. In the TCP/IP architecture, edge computing applications rely on centralized proxy servers to select an appropriate edge server, which leads to additional network overhead and increases service response latency. Due to its powerful forwarding plane, Information-Centric Networking (ICN) has the potential to provide more efficient networking support for edge computing than TCP/IP. However, traditional ICN only addresses named data and cannot well support the handle of dynamic content. In this article, we propose an edge computing service architecture based on ICN, which contains the edge computing service session model, service request forwarding strategies, and service dynamic deployment mechanism. The proposed service session model can not only keep the overhead low but also push the results to the computing requester immediately once the computing is completed. However, the service request forwarding strategies can forward computing requests to an appropriate edge server in a distributed manner. Compared with the TCP/IP-based proxy solution, our forwarding strategy can avoid unnecessary network transmissions, thereby reducing the service completion time. Moreover, the service dynamic deployment mechanism decides whether to deploy an edge service on an edge server based on service popularity, so that edge services can be dynamically deployed to hotspot, further reducing the service completion time.


2022 ◽  
Vol 40 (2) ◽  
pp. 1-31
Author(s):  
Masoud Mansoury ◽  
Himan Abdollahpouri ◽  
Mykola Pechenizkiy ◽  
Bamshad Mobasher ◽  
Robin Burke

Fairness is a critical system-level objective in recommender systems that has been the subject of extensive recent research. A specific form of fairness is supplier exposure fairness, where the objective is to ensure equitable coverage of items across all suppliers in recommendations provided to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end user but also for other stakeholders such as item sellers or producers who desire a fair representation of their items. This type of supplier fairness is sometimes accomplished by attempting to increase aggregate diversity to mitigate popularity bias and to improve the coverage of long-tail items in recommendations. In this article, we introduce FairMatch, a general graph-based algorithm that works as a post-processing approach after recommendation generation to improve exposure fairness for items and suppliers. The algorithm iteratively adds high-quality items that have low visibility or items from suppliers with low exposure to the users’ final recommendation lists. A comprehensive set of experiments on two datasets and comparison with state-of-the-art baselines show that FairMatch, although it significantly improves exposure fairness and aggregate diversity, maintains an acceptable level of relevance of the recommendations.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-30
Author(s):  
Ajay Krishna ◽  
Michel Le Pallec ◽  
Radu Mateescu ◽  
Gwen Salaün

Consumer Internet of Things (IoT) applications are largely built through end-user programming in the form of event-action rules. Although end-user tools help simplify the building of IoT applications to a large extent, there are still challenges in developing expressive applications in a simple yet correct fashion. In this context, we propose a formal development framework based on the Web of Things specification. An application is defined using a composition language that allows users to compose the basic event-action rules to express complex scenarios. It is transformed into a formal specification that serves as the input for formal analysis, where the application is checked for functional and quantitative properties at design time using model checking techniques. Once the application is validated, it can be deployed and the rules are executed following the composition language semantics. We have implemented these proposals in a tool built on top of the Mozilla WebThings platform. The steps from design to deployment were validated on real-world applications.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-29
Author(s):  
Ovidiu Dan ◽  
Vaibhav Parikh ◽  
Brian D. Davison

IP Geolocation databases are widely used in online services to map end-user IP addresses to their geographical location. However, they use proprietary geolocation methods, and in some cases they have poor accuracy. We propose a systematic approach to use reverse DNS hostnames for geolocating IP addresses, with a focus on end-user IP addresses as opposed to router IPs. Our method is designed to be combined with other geolocation data sources. We cast the task as a machine learning problem where, for a given hostname, we first generate a list of potential location candidates, and then we classify each hostname and candidate pair using a binary classifier to determine which location candidates are plausible. Finally, we rank the remaining candidates by confidence (class probability) and break ties by population count. We evaluate our approach against three state-of-the-art academic baselines and two state-of-the-art commercial IP geolocation databases. We show that our work significantly outperforms the academic baselines and is complementary and competitive with commercial databases. To aid reproducibility, we open source our entire approach and make it available to the academic community.


2022 ◽  
Vol 54 (8) ◽  
pp. 1-36 ◽  
Author(s):  
Gopika Ajaykumar ◽  
Maureen Steele ◽  
Chien-Ming Huang

As robots interact with a broader range of end-users, end-user robot programming has helped democratize robot programming by empowering end-users who may not have experience in robot programming to customize robots to meet their individual contextual needs. This article surveys work on end-user robot programming, with a focus on end-user program specification. It describes the primary domains, programming phases, and design choices represented by the end-user robot programming literature. The survey concludes by highlighting open directions for further investigation to enhance and widen the reach of end-user robot programming systems.


2022 ◽  
Vol 5 (2) ◽  
pp. 01-03
Author(s):  
Tell Joseph David

Many people affected by disability require assistive devices, particularly mobility aids, in order to live independently and fully integrate into their communities. Throughout the world, numerous methods have been implemented in facilitating the provision of these devices to people affected by disabilities. This case study intends use the Rajanagarindra Institute of Child Development Wheelchair Project, located in Chiang Mai, Thailand, to evaluate the viability and efficacy of mobility-provision programs which adapt wheelchairs and other assistive devices not originally intended for the end user. Programs which must “retro-adapt” equipment, like the Wheelchair Project, rely heavily on medical and mechanical expertise to identify the recipients’ needs and safely modify the device accordingly. By examining the distribution statistics from the Wheelchair Project over its 20 years of operation and the needs of the disability community reported by the National Statistics Office of Thailand alongside a cost-benefit analysis of the declared value provided versus operational cost, this case-study systematically details the scope and financial viability of this approach. While not without constraints, this model succeeds in effectively capitalizing on available resources (both in regard to physical equipment as well as professional expertise) to meet the needs of those affected by disabilities in Thailand and Southeast Asia. Although still limited in size and reach, the Wheelchair Project demonstrably shows its viability and the potential this approach presents given the right circumstances.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 513
Author(s):  
Efstratios Chatzoglou ◽  
Georgios Kambourakis ◽  
Christos Smiliotopoulos

The impact that IoT technologies have on our everyday life is indisputable. Wearables, smart appliances, lighting, security controls, and others make our life simpler and more comfortable. For the sake of easy monitoring and administration, such devices are typically accompanied by smartphone apps, which are becoming increasingly popular, and sometimes are even required to operate the device. Nevertheless, the use of such apps may indirectly magnify the attack surface of the IoT device itself and expose the end-user to security and privacy breaches. Therefore, a key question arises: do these apps curtail their functionality to the minimum needed, and additionally, are they secure against known vulnerabilities and flaws? In seek of concrete answers to the aforesaid question, this work scrutinizes more than forty chart-topping Android official apps belonging to six diverse mainstream categories of IoT devices. We attentively analyse each app statically, and almost half of them dynamically, after pairing them with real-life IoT devices. The results collected span several axes, namely sensitive permissions, misconfigurations, weaknesses, vulnerabilities, and other issues, including trackers, manifest data, shared software, and more. The short answer to the posed question is that the majority of such apps still remain susceptible to a range of security and privacy issues, which in turn, and at least to a significant degree, reflects the general proclivity in this ecosystem.


10.2196/27952 ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. e27952
Author(s):  
Ahmed Shaikh ◽  
Abhishek Bhatia ◽  
Ghanshyam Yadav ◽  
Shashwat Hora ◽  
Chung Won ◽  
...  

In the wake of the COVID-19 pandemic, digital health tools have been deployed by governments around the world to advance clinical and population health objectives. Few interventions have been successful or have achieved sustainability or scale. In India, government agencies are proposing sweeping changes to India’s digital health architecture. Underpinning these initiatives is the assumption that mobile health solutions will find near universal acceptance and uptake, though the observed reticence of clinicians to use electronic health records suggests otherwise. In this practice article, we describe our experience with implementing a digital surveillance tool at a large mass gathering, attended by nearly 30 million people. Deployed with limited resources and in a dynamic chaotic setting, the adherence to human-centered design principles resulted in near universal adoption and high end-user satisfaction. Through this use case, we share generalizable lessons in the importance of contextual relevance, stakeholder participation, customizability, and rapid iteration, while designing digital health tools for individuals or populations.


Author(s):  
Raffaele Ariano ◽  
Marco Manca ◽  
Fabio Paternò ◽  
Carmen Santoro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document