scholarly journals Bubble Nucleation in Theories with Symmetry Breaking by Radiative Corrections

Author(s):  
Erick J. Weinberg
1973 ◽  
Vol 7 (6) ◽  
pp. 1888-1910 ◽  
Author(s):  
Sidney Coleman ◽  
Erick Weinberg

Author(s):  
M. Sami ◽  
Radouane Gannouji

Spontaneous symmetry breaking is the foundation of electroweak unification and serves as an integral part of the model building beyond the standard model of particle physics and it also finds interesting applications in the late Universe. We review development related to obtaining the late cosmic acceleration from spontaneous symmetry breaking in the Universe at large scales. This phenomenon is best understood through Ginzburg–Landau theory of phase transitions which we briefly describe. Hereafter, we present elements of spontaneous symmetry breaking in relativistic field theory. We then discuss the “symmetron” scenario-based upon symmetry breaking in the late Universe which is realized by using a specific form of conformal coupling. However, the model is faced with “NO GO” for late-time acceleration due to local gravity constraints. We argue that the problem can be circumvented by using the massless [Formula: see text] theory coupled to massive neutrino matter. As for the early Universe, spontaneous symmetry breaking finds its interesting applications in the study of electroweak phase transition. To this effect, we first discuss in detail the Ginzburg–Landau theory of first-order phase transitions and then apply it to electroweak phase transition including technical discussions on bubble nucleation and sphaleron transitions. We provide a pedagogical exposition of dynamics of electroweak phase transition and emphasize the need to go beyond the standard model of particle physics for addressing the baryogenesis problem. Review ends with a brief discussion on Affleck–Dine mechanism and spontaneous baryogenesis. Appendixes include technical details on essential ingredients of baryogenesis, sphaleron solution, one-loop finite temperature effective potential and dynamics of bubble nucleation.


1984 ◽  
Vol 148 (4-5) ◽  
pp. 304-308 ◽  
Author(s):  
Peter Moxhay ◽  
Katsuji Yamamoto

2020 ◽  
Vol 30 (1) ◽  
pp. 61
Author(s):  
Binh Dinh Thanh ◽  
Phong Vo Quoc ◽  
Hoang Ngoc Long

The bubble nucleation in the framework of 3-3-1-1 model is studied. Previous studies show that first order electroweak phase transition occurs in two periods. In this paper we evaluate the bubble nucleation temperature throughout the parameter space. Using the stringent condition for bubble nucleation formation we find that in the first period, symmetry breaking from \(SU(3)\rightarrow SU(2)\), the bubble is formed at the nucleation temperature $T=150$ GeV and the lower bound of the scalar mass is 600 GeV. In the second period, symmetry breaking from \((SU(2)\rightarrow U(1)\), only subcritical bubbles are formed. This constraint eliminates the electroweak baryon genesis in the second period of the model.


Sign in / Sign up

Export Citation Format

Share Document