spontaneous symmetry breaking
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 155)

H-INDEX

64
(FIVE YEARS 6)

2021 ◽  
Vol 186 (1) ◽  
Author(s):  
Diana Conache ◽  
Markus Heydenreich ◽  
Franz Merkl ◽  
Silke W. W. Rolles

AbstractWe study the behavior of the variance of the difference of energies for putting an additional electric unit charge at two different locations in the two-dimensional lattice Coulomb gas in the high-temperature regime. For this, we exploit the duality between this model and a discrete Gaussian model. Our estimates follow from a spontaneous symmetry breaking in the latter model.


2021 ◽  
Vol 2021 (12) ◽  
pp. 047
Author(s):  
Felipe F. Freitas ◽  
Carlos A.R. Herdeiro ◽  
António P. Morais ◽  
António Onofre ◽  
Roman Pasechnik ◽  
...  

Abstract We construct families, and concrete examples, of simple extensions of the Standard Model that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance. Specifically, the mass range for these putative fundamental bosons (∼ 10-10-10-20 eV) would lead dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black holes, with masses of ∼ M⊙ to ∼ 1010 M⊙, corresponding to the mass range of astrophysical black hole candidates (from stellar mass to supermassive). For each model, we study the properties of the mass spectrum and interactions after spontaneous symmetry breaking, discuss its theoretical viability and caveats, as well as some of its potential and most relevant phenomenological implications linking them to the physics of compact objects.


Author(s):  
Valter Moretti ◽  
Christiaan J. F. van de Ven

The algebraic properties of a strict deformation quantization are analyzed on the classical phase space [Formula: see text]. The corresponding quantization maps enable us to take the limit for [Formula: see text] of a suitable sequence of algebraic vector states induced by [Formula: see text]-dependent eigenvectors of several quantum models, in which the sequence converges to a probability measure on [Formula: see text], defining a classical algebraic state. The observables are here represented in terms of a Berezin quantization map which associates classical observables (functions on the phase space) to quantum observables (elements of [Formula: see text] algebras) parametrized by [Formula: see text]. The existence of this classical limit is in particular proved for ground states of a wide class of Schrödinger operators, where the classical limiting state is obtained in terms of a Haar integral. The support of the classical state (a probability measure on the phase space) is included in certain orbits in [Formula: see text] depending on the symmetry of the potential. In addition, since this [Formula: see text]-algebraic approach allows for both quantum and classical theories, it is highly suitable to study the theoretical concept of spontaneous symmetry breaking (SSB) as an emergent phenomenon when passing from the quantum realm to the classical world by switching off [Formula: see text]. To this end, a detailed mathematical description is outlined and it is shown how this algebraic approach sheds new light on spontaneous symmetry breaking in several physical models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Iguchi ◽  
R. Masuda ◽  
S. Seki ◽  
Y. Tokura ◽  
Y. Takahashi

AbstractSpontaneous symmetry breaking in crystalline solid often produces exotic nonreciprocal phenomena. As one such example, the unconventional optical rotation with nonreciprocity, which is termed gyrotropic birefringence, is expected to emerge from the magnetoelectric coupling. However, the fundamental nature of gyrotropic birefringence remains to be examined. Here w`e demonstrate the gyrotropic birefringence enhanced by the dynamical magnetoelectric coupling on the electrically active magnon resonance, i.e. electromagnon, in a multiferroic helimagnet. The helical spin order having both polarity and chirality is found to cause the giant gyrotropic birefringence in addition to the conventional gyrotropy, i.e. natural optical activity. It is demonstrated that the optical rotation of gyrotropic birefringence can be viewed as the nonreciprocal rotation of the optical principal axes, while the crystallographic and magnetic anisotropies are intact. The independent control of the nonreciprocal linear (gyrotropic birefringence) and circular (natural optical activity) birefringence/dichroism paves a way for the optically active devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evgeny Sedov ◽  
Sergey Arakelian ◽  
Alexey Kavokin

AbstractWe predict the spontaneous symmetry breaking in a spinor Bose–Einstein condensate of exciton-polaritons (polaritons) caused by the coupling of its spin and orbital degrees of freedom. We study a polariton condensate trapped in a ring-shaped effective potential with a broken rotational symmetry. We propose a realistic scheme of generating controllable spinor azimuthal persistent currents of polaritons in the trap under the continuous wave optical pump. We propose a new type of half-quantum circulating states in a spinor system characterized by azimuthal currents in both circular polarizations and a vortex in only one of the polarizations. The spontaneous symmetry breaking in the spinor polariton condensate that consists in the switching from co-winding to opposite-winding currents in opposite spin states is revealed. It is characterized by the change of the average orbital angular momentum of the condensate from zero to non-zero values. The radial displacement of the pump spot and the polarization of the pump act as the control parameters. The considered system exhibits a fundamental similarity to a superconducting flux qubit, which makes it highly promising for applications in quantum computing.


2021 ◽  
Vol 104 (18) ◽  
Author(s):  
Gaia Germanese ◽  
Federico Paolucci ◽  
Giampiero Marchegiani ◽  
Alessandro Braggio ◽  
Francesco Giazotto

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2076
Author(s):  
Priidik Gallagher ◽  
Tomi Koivisto

Notoriously, the two main problems of the standard ΛCDM model of cosmology are the cosmological constant Λ and the cold dark matter, CDM. This essay shows that both the Λ and the CDM arise as integration constants in a careful derivation of Einstein’s equations from first principles in a Lorentz gauge theory. The dark sector of the universe might only reflect the geometry of a spontaneous symmetry breaking that is necessary for the existence of spacetime and an observer therein.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2777
Author(s):  
Ivan Arraut ◽  
João Alexandre Lobo Marques ◽  
Sergio Gomes

The spontaneous symmetry breaking phenomena applied to Quantum Finance considers that the martingale state in the stock market corresponds to a ground (vacuum) state if we express the financial equations in the Hamiltonian form. The original analysis for this phenomena completely ignores the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct in most of the cases. However, when we deal with the martingale condition, it comes out that the kinetic terms can also behave as potential terms and then reproduce a shift on the effective location of the vacuum (martingale). In this paper, we analyze the effective symmetry breaking patterns and the connected vacuum degeneracy for these special circumstances. Within the same scenario, we analyze the connection between the flow of information and the multiplicity of martingale states, providing in this way powerful tools for analyzing the dynamic of the stock markets.


Sign in / Sign up

Export Citation Format

Share Document