electroweak phase transition
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 82)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Qing-Hong Cao ◽  
Katsuya Hashino ◽  
Xu-Xiang Li ◽  
Zhe Ren ◽  
Jiang-Hao Yu

Abstract To realize first-order electroweak phase transition, it is necessary to generate a barrier in the thermal Higgs potential, which is usually triggered by scalar degree of freedom. We instead investigate phase transition patterns in pure fermion extensions of the standard model, and find that additional fermions with mass hierarchy and mixing could develop such a barrier and realize a strongly first-order phase transition in such models. In the Higgs potential with polynomial parametrization, the barrier can be generated in the following two patterns by fermionic reduction effects: (I) positive quadratic term, negative cubic term and positive quartic term or (II) positive quadratic term, negative quartic term and positive higher dimensional term, such as dimensional 6 operator.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Martin Gabelmann ◽  
M. Margarete Mühlleitner ◽  
Jonas Müller

Abstract We study the impact of additional beyond-the-Standard Model (BSM) fermions, charged under the Standard Model (SM) SU(2)L ⊗ U(1)Y gauge group, on the electroweak phase transition (EWPT) in a 2-Higgs-Doublet-Model (2HDM) of type II. We find that the strength of the EWPT can be enhanced by about 40% compared to the default 2HDM. Therefore, additional light fermions are a useful tool to weaken the tension between increasing mass constraints on BSM scalars and the requirement of additional light scalar degrees of freedom to accommodate a strong first order EWPT. The findings are of particular interest for a variety of (non-minimal) split supersymmetry scenarios which necessarily introduce additional light fermion degrees of freedom.


2022 ◽  
Vol 2022 (01) ◽  
pp. 021
Author(s):  
Maxim Dvornikov

Abstract We study the production of relic gravitational waves (GWs) in turbulent hypermagnetic fields (HMFs) in the symmetric phase of the early universe before the electroweak phase transition (EWPT). The noise of HMFs is modeled by the analog of the magnetic hydrodynamics turbulence. The evolution of HMFs is driven by the analogs of the chiral magnetic effect and the Adler anomalies in the presence of the nonzero asymmetries of leptons and Higgs bosons. We track the evolution of the energy density of GWs from 10 TeV down to EWPT and analyze its dependence on the parameters of the system. We also discuss the possibility to observe the predicted GW background by the current GW detectors.


Author(s):  
Arnab Chaudhuri ◽  
Maxim Yu. Khlopov

When the vacuum like energy of the Higgs potential within the standard model undergoes electroweak phase transition, an influx of entropy into the primordial plasma can lead to a significant dilution of frozen out dark matter density that was already present before the onset of the phase transition. The same effect can take place if the early universe was dominated by primordial black holes of small mass, evaporating before the period of Big Bang Nucleosynthesis. In this paper, we calculate the dilution factor for the above-mentioned scenarios.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Nimmala Narendra ◽  
Narendra Sahu ◽  
Sujay Shil

AbstractWe propose a minimal model for the cosmic coincidence problem $$\Omega _\mathrm{DM}/\Omega _B \sim 5$$ Ω DM / Ω B ∼ 5 and neutrino mass in a type-II seesaw scenario. We extend the standard model of particle physics with a $$\mathrm SU(2)$$ S U ( 2 ) singlet leptonic Dirac fermion $$\chi $$ χ , which represents the candidate of dark matter (DM), and two triplet scalars $$\Delta _{1,2}$$ Δ 1 , 2 with hierarchical masses. In the early Universe, the CP violating out-of-equilibrium decay of lightest $$\Delta $$ Δ generates a net $$B-L$$ B - L asymmetry in the visible sector (comprising of SM fields), where B and L represents the total baryon and lepton number respectively. A part of this asymmetry gets transferred to the dark sector (comprising of DM $$\chi $$ χ ) through a dimension eight operator which conserves $$B-L$$ B - L . Above the electroweak phase transition, the $$B-L$$ B - L asymmetry of the visible sector gets converted to a net B-asymmetry by the $$B+L$$ B + L violating sphalerons, while the $$B-L$$ B - L asymmetry of the dark sector remains untouched which we see today as relics of DM. We show that the observed DM abundance can be explained for a DM mass about 8 GeV. We then introduce an additional singlet scalar field $$\phi $$ ϕ which mixes with the SM-Higgs to annihilate the symmetric component of the DM resonantly which requires the singlet scalar mass to be twice the DM mass, i.e. around 16 GeV, which can be searched at collider experiments. In our model, the active neutrinos also get small masses by the induced vacuum expectation value (vev) of the triplet scalars $$\Delta _{1,2}$$ Δ 1 , 2 . In the later part of the paper we discuss all the constraints on model parameters coming from invisible Higgs decay, Higgs signal strength, DM direct detection and relic density of DM.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Maxim Dvornikov ◽  
Victor B. Semikoz

AbstractWe study a matter turbulence caused by strong random hypermagnetic fields (HMFs) that influence the baryon asymmetry evolution due to the Abelian anomalies in the symmetric phase in the early Universe. Such a matter turbulence is stipulated by the presence of the advection term in the induction equation for which a fluid velocity is dominated by the Lorentz force in the Navier–Stokes equation. For random HMFs, having nonzero mean squared strengths, we calculate the spectra for the HMF energy and the HMF helicity densities. The latter function governs the evolution of the fermion asymmetries in the symmetric phase before the electroweak phase transition (EWPT). In the simplest model based on the first SM generation for the lepton asymmetries of $$e_\mathrm {R,L}$$ e R , L and $$\nu _{e_\mathrm {L}}$$ ν e L , we calculate a decline of all fermion asymmetries including the baryon asymmetry, given by the ‘t Hooft conservation law, when one accounts for a turbulence of HMFs during the universe cooling down to EWPT. We obtain that the stronger the mean squared strength of random initial HMFs is, the deeper the fermion asymmetries decrease, compared to the case in the absence of any turbulence.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Francesco D’Eramo ◽  
Fazlollah Hajkarim ◽  
Seokhoon Yun

Abstract Thermal axion production in the early universe goes through several mass thresholds, and the resulting rate may change dramatically across them. Focusing on the KSVZ and DFSZ frameworks for the invisible QCD axion, we perform a systematic analysis of thermal production across thresholds and provide smooth results for the rate. The QCD phase transition is an obstacle for both classes of models. For the hadronic KSVZ axion, we also deal with production at temperatures around the mass of the heavy-colored fermion charged under the Peccei-Quinn symmetry. Within the DFSZ framework, standard model fermions are charged under this symmetry, and additional thresholds are the heavy Higgs bosons masses and the electroweak phase transition. We investigate the cosmological implications with a specific focus on axion dark radiation quantified by an effective number of neutrino species and explore the discovery reach of future CMB-S4 surveys.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
José Eliel Camargo-Molina ◽  
Rikard Enberg ◽  
Johan Löfgren

Abstract A first-order Electroweak Phase Transition (EWPT) could explain the observed baryon-antibaryon asymmetry and its dynamics could yield a detectable gravitational wave signature, while the underlying physics would be within the reach of colliders. The Standard Model, however, predicts a crossover transition. We therefore study the EWPT in the Standard Model Effective Field Theory (SMEFT) including dimension-six operators. A first-order EWPT has previously been shown to be possible in the SMEFT. Phenomenology studies have focused on scenarios with a tree-level barrier between minima, which requires a negative Higgs quartic coupling and a new physics scale low enough to raise questions about the validity of the EFT approach. In this work we stress that a first-order EWPT is also possible when the barrier between minima is generated radiatively, the quartic coupling is positive, the scale of new physics is higher, and there is good agreement with experimental bounds. Our calculation is done in a consistent, gauge-invariant way, and we carefully analyze the scaling of parameters necessary to generate a barrier in the potential. We perform a global fit in the relevant parameter space and explicitly find the points with a first-order transition that agree with experimental data. We also briefly discuss the prospects for probing the allowed parameter space using di-Higgs production in colliders.


Sign in / Sign up

Export Citation Format

Share Document