scholarly journals Propagation of Rhinovirus-C Strains in Human Airway Epithelial Cells Differentiated at Air-Liquid Interface

Author(s):  
Shamaila Ashraf ◽  
Rebecca Brockman-Schneider ◽  
James E. Gern
2020 ◽  
pp. 00705-2020
Author(s):  
Abiram Chandiramohan ◽  
Mohammedhossein Dabaghi ◽  
Jennifer A. Aguiar ◽  
Nicholas Tiessen ◽  
Mary Stewart ◽  
...  

Accessible in vitro models recapitulating the human airway that are amenable to study whole cannabis smoke exposure are needed for immunological and toxicological studies that inform public health policy and recreational cannabis use. In the present study, we developed and validated a novel 3D printed In Vitro Exposure System (IVES) that can be directly applied to study the effect of cannabis smoke exposure on primary human bronchial epithelial cells.Using commercially available design software and a 3D printer, we designed a four-chamber Transwell® insert holder for exposures to whole smoke. COMSOL® Multiphysics software was used to model gas distribution, concentration gradients, velocity profile and shear stress within IVES. Following simulations, primary human bronchial epithelial cells cultured at air-liquid interface on Transwell® inserts were exposed to whole cannabis smoke using a modified version of the Foltin Puff procedure. Following 24 h, outcome measurements included cell morphology, epithelial barrier function, lactate dehydrogenase (LDH) levels, cytokine and gene expression.Whole smoke delivered through IVES possesses velocity profiles consistent with uniform gas distribution across the four chambers and complete mixing. Airflow velocity ranged between 1.0–1.5 µm s−1 and generated low shear stresses (≪ 1 Pa). Human airway epithelial cells exposed to cannabis smoke using IVES showed changes in cell morphology and disruption of barrier function without significant cytotoxicity. Cannabis smoke elevated IL-1 family cytokines and elevated CYP1A1 and CYP1B1 expression relative to control, validating IVES smoke exposure impacts in human airway epithelial cells at a molecular level.The growing legalisation of cannabis on a global scale must be paired with research related to potential health impacts of lung exposures. IVES represents an accessible, open-source, exposure system that can be used to model varying types of cannabis smoke exposures with human airway epithelial cells grown under air-liquid interface culture conditions.


2015 ◽  
Vol 89 (7) ◽  
pp. 4041-4041
Author(s):  
Weidong Hao ◽  
Katie Bernard ◽  
Nita Patel ◽  
Nancy Ulbrandt ◽  
Hui Feng ◽  
...  

Author(s):  
Aubrey Nicole Michi ◽  
David Proud

Submerged cultures of primary human airway epithelial cells, or human airway epithelial cell lines have been a mainstay of airway epithelial biology research for decades due to their robust in vitro proliferative capacity, relatively low maintenance culture conditions, and clinically translatable results to nasal or bronchial brushings. With the development and improvement of air-liquid interface (ALI) cultures of human airway epithelial cells, such cultures have been considered superior to immortalized cell lines and primary cell monolayers as such cultures effectively recapitulate in vivo epithelial architecture and cell types. Although ALI culture growth protocols are well-established and widely available, many researchers have avoided their use, as ALI cultures not only take longer to grow but also present technical challenges and limitations that make in vitro intracellular and structural assays taxing. Challenges arise relating to their complex structure, requirements for air exposure, the constraints of transwell growth apparatus, and interference in assays caused by mucus secretion. Although few publications briefly describe technical adaptations for some assays, there is still considerable trial and error required for researchers to establish consistent and reliable assay adaptations, often becoming a deterrent for pursuing mechanistic investigation. We have created a user-friendly toolbox detailing comprehensive protocols for numerous techniques and assay adaptations, particularly focusing on respiratory virus infections. By expanding the repertoire of ALI culture-adapted in vitro assays, we hope to facilitate the widespread adoption of this valuable culture system for mechanistic investigations of respiratory viral infections or other epithelial-pathogen models.


2016 ◽  
Vol 97 (5) ◽  
pp. 1077-1086 ◽  
Author(s):  
Olivier Escaffre ◽  
Viktoriya Borisevich ◽  
Leoncio A. Vergara ◽  
Julie W. Wen ◽  
Dan Long ◽  
...  

2012 ◽  
Vol 86 (24) ◽  
pp. 13524-13532 ◽  
Author(s):  
W. Hao ◽  
K. Bernard ◽  
N. Patel ◽  
N. Ulbrandt ◽  
H. Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document