Regulatory Considerations for Implementation of the QbD Paradigm for Biologics: Laying the Foundation for Product and Process Lifecycle Management

Author(s):  
Lynne Krummen
Author(s):  
Omar Msaaf ◽  
Roland Maranzana ◽  
Louis Rivest

Difficulty in locating existing information in order to reuse it constitutes a major challenge to productivity. The use of PLM systems (Product Lifecycle Management) aims in particular to reduce the time and cost of developing a product by facilitating the re-use of existing parts or related information (process plans, tools, FEM, estimates, etc.). When information is alphanumerical, using search engines, such as those made popular on the internet, is efficient. However, a significant portion of information used in engineering rests within CAD (Computer Aided Design) models, making such search tools irrelevant. To aid in the re-use of information, two problems must be resolved: it is first necessary to be able to locate similar parts in the electronic database of the company, and then be able to systematically identify their differences. This article presents some of the results from our work on part, product and process data mining (P3DM). It focuses on tools developed to search similar 3D geometric models and to identify their differences. The PartFinder application locates similar parts by comparing signatures extracted from their solid representations. The 3DComparator aims to identify the differences in terms of Form and Fit between the identified parts. In both cases, the recommended approach is independent of the CAD system, and can also deal with parts represented by IGES or STEP files. Moreover, the approach does not require that the parts occupy the same position and have the same orientation in space. These two points, CAD and position independence, are the main benefits of our approach compared to other existing applications. Lastly, if the comparison takes place between two evolutions of the same geometrical representation of a part, a third tool allows the comparison of the specification trees. The SpecComparator is also presented briefly. An example based on industrial data illustrates the benefit that could be generated.


Author(s):  
Joa˜o P. M. A. Silva ◽  
Ricardo Jardim-Goncalves ◽  
Adolfo Steiger-Garc¸a˜o ◽  
Anto´nio A. C. Monteiro

Recently, computational design aiding tools resources are undertaken in modern companies, enhancing high quality product definition development. However, accurate digital product descriptions are attained through multiple software applications, each one seeking to solve focused needs. Regardless significant advances, there still remains a substantial computational deficiency in how these systems interact with each other between the several PLC stages. Plural issues with different origin and nature contribute to such state, increasing the research community interest to contribute with solution that minimizes the problem. In particular, one main issue refers to product and process knowledge exchange along PLC stages. According to this scenario, and with market pressure to increase profits and reduce redundancies, an efficient coordination and management of all the activities taking place along the Production Process must be performed. Hence, promising technologies of Product Lifecycle Management are considered strategic to manage capture of product knowledge along its life, from initial conception to retirement. This paper proposes the use of an ontology to be used in a knowledge-based system, giving support to a comprehensive product model to improve integration and data exchange capabilities trough entire PLC. The capture, handle and re-use of knowledge from multiple disciplines during PLC (e.g. design, manufacture or maintenance), extending capabilities of existent product and process models is the promising main benefit of ontologies development.


2019 ◽  
Vol 21 (3) ◽  
pp. 25 ◽  
Author(s):  
Muyu Liu ◽  
Lei Liang ◽  
Hao Wu ◽  
Gang Xu ◽  
Qian Li

2016 ◽  
Vol 111 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
Martin Eigner ◽  
Christian Muggeo ◽  
Hristo Apostolov ◽  
Patrick Schäfer
Keyword(s):  

2014 ◽  
Vol 109 (11) ◽  
pp. 853-860 ◽  
Author(s):  
Martin Eigner ◽  
Hristo Apostolov ◽  
Thomas Dickopf ◽  
Patrick Schäfer ◽  
Karl-Gerhard Faißt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document