Part Data Mining for Information Re-Use in a PLM Context

Author(s):  
Omar Msaaf ◽  
Roland Maranzana ◽  
Louis Rivest

Difficulty in locating existing information in order to reuse it constitutes a major challenge to productivity. The use of PLM systems (Product Lifecycle Management) aims in particular to reduce the time and cost of developing a product by facilitating the re-use of existing parts or related information (process plans, tools, FEM, estimates, etc.). When information is alphanumerical, using search engines, such as those made popular on the internet, is efficient. However, a significant portion of information used in engineering rests within CAD (Computer Aided Design) models, making such search tools irrelevant. To aid in the re-use of information, two problems must be resolved: it is first necessary to be able to locate similar parts in the electronic database of the company, and then be able to systematically identify their differences. This article presents some of the results from our work on part, product and process data mining (P3DM). It focuses on tools developed to search similar 3D geometric models and to identify their differences. The PartFinder application locates similar parts by comparing signatures extracted from their solid representations. The 3DComparator aims to identify the differences in terms of Form and Fit between the identified parts. In both cases, the recommended approach is independent of the CAD system, and can also deal with parts represented by IGES or STEP files. Moreover, the approach does not require that the parts occupy the same position and have the same orientation in space. These two points, CAD and position independence, are the main benefits of our approach compared to other existing applications. Lastly, if the comparison takes place between two evolutions of the same geometrical representation of a part, a third tool allows the comparison of the specification trees. The SpecComparator is also presented briefly. An example based on industrial data illustrates the benefit that could be generated.




2007 ◽  
Vol 129 (12) ◽  
pp. 20-23
Author(s):  
Jean Thilmany

This article discusses the future of software that links engineering and manufacturing. Companies are seeking a natural link between engineering and manufacturing, even if some aspects of it may be restricted. According to experts, giving manufacturers direct access to that design information would help them isolate potential manufacturing problems earlier in the cycle, cut product development time by stepping up design-manufacturing communication, and ensure that products will comply with government regulations. The article also describes that by allowing for quick communication and updates to an already existing computer-aided design model, product lifecycle management (PLM) can help speed these products to market. Engineers are putting efforts to bring PLM information to the factory floor to cut production time. Though the day of easy integration has yet to arrive, many companies are using PLM to reduce cycle time. Pushing PLM to the factory floor would help, according to an engineer. However, that's not an option for many until integration software comes to the fore.





2003 ◽  
Vol 125 (01) ◽  
pp. 44-46 ◽  
Author(s):  
Jean Thilmany

This article focuses on how acronyms serve a useful purpose to people in a certain industry because they know right away what area is being referred to without having to go into a long, elaborate explanation. For the record, CAD stands for “computer-aided design,” CAM for “computer-aided manufacturing,” and PLM for “product lifecycle management,” which are all software applications used by engineers. Acronyms that are bandied about without ever being defined can make all but seasoned veterans feel as if they are in a subject over their heads. Manufacturers have an ongoing task of sorting through acronyms and finding those that have meanings for them, as opposed to those that are merely flavors of the day and will ultimately fall by the wayside.



Author(s):  
S. Minami ◽  
T. Ishida ◽  
S. Yamamoto ◽  
K. Tomita ◽  
M. Odamura

Abstract A concept for the initial stage of the mechanical design and its implementation in the computer-aided design (CAD) are presented. The process of decision making in design is: (1) determining an outline of the whole assembly using a 2-dimensional model that is easy to operate; (2) checking the outline using a 3-dimensional model in which it is easy to identify the spatial relationships; (3) determining details of its sub-assemblies or their components using the 2-dimensional model; and (4) checking the details using the 3-dimensional model. The CAD system must provide consistent relationships through all the steps. For that, following functions are implemented in our prototype system: (1) a 2D and 3D integrated model for consistency between 2- and 3-dimensional shapes, (2) a hierarchical assembly model with dimensional constraints for consistency within an assembly and their components, and (3) a check on constraints for consistency between shapes and designers’ intentions. As a result, the system can provide an environment well fitted to the designers’ decision making process.



2006 ◽  
Vol 12 (2) ◽  
pp. 91-98 ◽  
Author(s):  
Vladimir Popov ◽  
Saulius Mikalauskas ◽  
Darius Migilinskas ◽  
Povilas Vainiūnas

With the growth of information technologies in the field of construction industry, the concept of CAD (Computer Aided Design), which denotes just design operations using a computer acquires a new meaning and changes the contents lightening design process based on product modelling and further numerical simulation construction process and facility managing. New definitions as Building Information Modelling (BIM) and Product Lifecycle Management (PLM) are more and more usable as the definition of a new way approaching the design and documentation managing of building projects. The presented computer aided design technology based on the concept of graphical ‐ information modeling of a building, is combined with resource demand calculations, comparison of alternatives and determination of duration of all the stages of investment project life. The software based on this combined 4D PLM model is to be created as a means to manage effectively the investment project, starting from planning, designing, economical calculations, construction and afterwards to manage the finished building and to utilize it.



Author(s):  
S. N. Trika ◽  
P. Banerjee ◽  
R. L. Kashyap

Abstract A virtual reality (VR) interface to a feature-based computer-aided design (CAD) system promises to provide a simple interface to a designer of mechanical parts, because it allows intuitive specification of design features such as holes, slots, and protrusions in three-dimensions. Given the current state of a part design, the designer is free to navigate around the part and in part cavities to specify the next feature. This method of feature specification also provides directives to the process-planner regarding the order in which the features may be manufactured. In iterative feature-based design, the existing part cavities represent constraints as to where the designer is allowed to navigate and place the new feature. The CAD system must be able to recognize the part cavities and enforce these constraints. Furthermore, the CAD system must be able to update its knowledge of part cavities when the new feature is added. In this paper, (i) we show how the CAD system can enforce the aforementioned constraints by exploiting the knowledge of part cavities and their adjacencies, and (ii) present efficient methods for updates of the set of part cavities when the designer adds a new feature.



Author(s):  
M. J. Jakiela ◽  
P. Y. Papalambros

Abstract System requirements and system design for integrating a production rule program and a computer aided design system are presented. An implementation using a commercially available graphics modeling system is described. A “suggestive mode” interface is programmed as an example with application to design for automated assembly. Initial use of the implementation indicates that encoding production rules is more difficult than with conventional text-only knowledge-based systems, but that this system is a more effective way to use artificial intelligence techniques in design.



Author(s):  
Colin Chong ◽  
Kiyoshi Sogabe ◽  
Kosuke Ishii

Abstract This paper addresses the problem of balancing rotational plastic parts during the early stages of design. The study develops an interactive methodology that uses a solid modeling CAD system and considers injection molding concerns simultaneously with static and dynamic balance. The Transfer Matrix Method evaluates the dynamic characteristics by predicting the approximate critical speed of the part. Design Compatibility Analysis (DCA) checks for injection molding guidelines. Using these evaluation modules interactively, designers can develop a functional and manufacturable part quickly.



Sign in / Sign up

Export Citation Format

Share Document