Infinite Sequences I

Author(s):  
Miklós Laczkovich ◽  
Vera T. Sós
Keyword(s):  
2015 ◽  
Vol 52 (3) ◽  
pp. 350-370
Author(s):  
Jaroslav Hančl ◽  
Katarína Korčeková ◽  
Lukáš Novotný

We introduce the two new concepts, productly linearly independent sequences and productly irrational sequences. Then we prove a criterion for which certain infinite sequences of rational numbers are productly linearly independent. As a consequence we obtain a criterion for the irrationality of infinite products and a criterion for a sequence to be productly irrational.


Author(s):  
P. A. B. Pleasants

This note is concerned with infinite sequences whose terms are chosen from a finite set of symbols. A segment of such a sequence is a set of one or more consecutive terms, and a repetition is a pair of finite segments that are adjacent and identical. A non-repetitive sequence is one that contains no repetitions.


2019 ◽  
Vol 19 (06) ◽  
pp. 1950044
Author(s):  
Haijuan Su ◽  
Shengfan Zhou ◽  
Luyao Wu

We studied the existence of a random exponential attractor in the weighted space of infinite sequences for second-order nonautonomous stochastic lattice system with linear multiplicative white noise. Firstly, we present some sufficient conditions for the existence of a random exponential attractor for a continuous cocycle defined on a weighted space of infinite sequences. Secondly, we transferred the second-order stochastic lattice system with multiplicative white noise into a random lattice system without noise through the Ornstein–Uhlenbeck process, whose solutions generate a continuous cocycle on a weighted space of infinite sequences. Thirdly, we estimated the bound and tail of solutions for the random system. Fourthly, we verified the Lipschitz continuity of the continuous cocycle and decomposed the difference between two solutions into a sum of two parts, and carefully estimated the bound of the norm of each part and the expectations of some random variables. Finally, we obtained the existence of a random exponential attractor for the considered system.


2022 ◽  
Author(s):  
Ludmila Bourchtein ◽  
Andrei Bourchtein
Keyword(s):  

10.37236/1052 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Brad Jackson ◽  
Frank Ruskey

We consider a family of meta-Fibonacci sequences which arise in studying the number of leaves at the largest level in certain infinite sequences of binary trees, restricted compositions of an integer, and binary compact codes. For this family of meta-Fibonacci sequences and two families of related sequences we derive ordinary generating functions and recurrence relations. Included in these families of sequences are several well-known sequences in the Online Encyclopedia of Integer Sequences (OEIS).


KoG ◽  
2018 ◽  
pp. 3-11
Author(s):  
Boris Odehnal

A semi-orthogonal path is a polygon inscribed into a given polygon such that the $i$-th side of the path is orthogonal to the $i$-th side of the given polygon. Especially in the case of triangles, the closed semi-orthogonal paths are triangles which turn out to be similar to the given triangle. The iteration of the construction of semi-orthogonal paths in triangles yields infinite sequences of nested and similar triangles. We show that these two different sequences converge towards the bicentric pair of the triangle's Brocard points. Furthermore, the relation to discrete logarithmic spirals allows us to give a very simple, elementary, and new constructions of the sequences' limits, the Brocard points. We also add some remarks on semi-orthogonal paths in non-Euclidean geometries and in $n$-gons.


Sign in / Sign up

Export Citation Format

Share Document