In Vivo Electrophysiology of Dorsal-Horn Neurons

Author(s):  
Louise C. Stanfa ◽  
Anthony H. Dickenson
2009 ◽  
Vol 13 (S1) ◽  
Author(s):  
M. Gassner ◽  
M. Wagner ◽  
H. Fischer ◽  
R. Drdla ◽  
T. Jäger ◽  
...  

Pain ◽  
2002 ◽  
Vol 96 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Abdullahi Warsame Afrah ◽  
Atle Fiskå ◽  
Johannes Gjerstad ◽  
Henrik Gustafsson ◽  
Arne Tjølsen ◽  
...  

2008 ◽  
Vol 99 (6) ◽  
pp. 3144-3150 ◽  
Author(s):  
Rachel A. Ingram ◽  
Maria Fitzgerald ◽  
Mark L. Baccei

The lower thresholds and increased excitability of dorsal horn neurons in the neonatal rat suggest that inhibitory processing is less efficient in the immature spinal cord. This is unlikely to be explained by an absence of functional GABAergic inhibition because antagonism of γ-aminobutyric acid (GABA) type A receptors augments neuronal firing in vivo from the first days of life. However, it is possible that more subtle deficits in GABAergic signaling exist in the neonate, such as decreased reliability of transmission or greater depression during repetitive stimulation, both of which could influence the relative excitability of the immature spinal cord. To address this issue we examined monosynaptic GABAergic inputs onto superficial dorsal horn neurons using whole cell patch-clamp recordings made in spinal cord slices at a range of postnatal ages (P3, P10, and P21). The amplitudes of evoked inhibitory postsynaptic currents (IPSCs) were significantly lower and showed greater variability in younger animals, suggesting a lower fidelity of GABAergic signaling at early postnatal ages. Paired-pulse ratios were similar throughout the postnatal period, whereas trains of stimuli (1, 5, 10, and 20 Hz) revealed frequency-dependent short-term depression (STD) of IPSCs at all ages. Although the magnitude of STD did not differ between ages, the recovery from depression was significantly slower at immature GABAergic synapses. These properties may affect the integration of synaptic inputs within developing superficial dorsal horn neurons and thus contribute to their larger receptive fields and enhanced afterdischarge.


Neuroscience ◽  
2016 ◽  
Vol 316 ◽  
pp. 13-25 ◽  
Author(s):  
K.E. Farrell ◽  
M.M. Rank ◽  
S. Keely ◽  
A.M. Brichta ◽  
B.A. Graham ◽  
...  

2001 ◽  
Vol 85 (4) ◽  
pp. 1788-1792 ◽  
Author(s):  
Ian D. Hentall ◽  
Brian R. Noga ◽  
Jacqueline Sagen

Transplantation of chromaffin cells into the lumbar subarachnoid space has been found to produce analgesia, most conspicuously against chronic neuropathic pain. To ascertain the neurophysiological mechanism, we recorded electrical activity from wide-dynamic-range dorsal horn neurons in vivo, measuring the short-lasting homosynaptic facilitatory effect known as windup, which is induced by repetitive C-fiber input. Rats were given adrenal medulla allografts, or, as controls, striated-muscle allografts. The adrenal-transplanted rats showed analgesia 3–4 wk after transplantation, measured as a reduction in flinching reflexes 30–55 min after subcutaneous formalin injection. Recordings were made under halothane anesthesia, 3–7 days following the behavioral testing. The average C-fiber response and subsequent afterdischarge were facilitated severalfold in control rats by 1-Hz cutaneous electrical stimulation. Such facilitation was essentially absent in adrenal-transplanted animals and also in the A-fiber response of both preparations. Extirpation of transplanted tissue several hours prior to recording did not significantly affect this difference. In conclusion, the adrenal transplants block short-term spinal nociceptive facilitation, probably by stimulating some persistent cellular process that may be an important determinant, but not the only one, of their analgesic effect.


Sign in / Sign up

Export Citation Format

Share Document