in vivo electrophysiology
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 15)

H-INDEX

10
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Magdalena Solyga ◽  
Tania Rinaldi Barkat

Offset responses in auditory processing appear after a sound terminates. They arise in neuronal circuits within the peripheral auditory system, but their role in the central auditory system remains unknown. Here, we ask what the behavioral relevance of cortical offset responses is and what circuit mechanisms drive them. At the perceptual level, our results reveal that experimentally minimizing auditory cortical offset responses decreases the mouse performance to detect sound termination, assigning a behavioral role to offset responses. By combining in vivo electrophysiology in the auditory cortex and thalamus of awake mice, we also demonstrate that cortical offset responses are not only inherited from the periphery but also amplified and generated de novo. Finally, we show that offset responses code more than silence, including relevant changes in sound trajectories. Together, our results reveal the importance of cortical offset responses in encoding sound termination and detecting changes within temporally discontinuous sounds crucial for speech and vocalization.


Author(s):  
Alexey Sarapultsev ◽  
Pavel Vassiliev ◽  
Daniil Grinchii ◽  
Alexander Kiss ◽  
Mojmír Mach ◽  
...  

L-17 is a thiadiazine derivative with putative anti-inflammatory, neuroprotective, and antidepressant-like properties. In this study, we applied combined in silico, ex vivo, and in vivo electrophysiology techniques to reveal the potential mechanism of action of L-17. PASS 10.4 Professional Extended software suggested that L-17 might have pro-cognitive, antidepressant, and antipsychotic effects. Docking energy assessment with AutoDockVina predicted that the binding affinities of L-17 to the serotonin transporter (SERT) and serotonin receptors 3 and 1A (5-HT3 and 5-HT1A) receptors are compatible to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and selective antagonists of 5-HT3 and 5-HT1A receptors, granisetron and WAY100135, respectively. Acute pre-treatment with L-17 robustly increased c-Fos immunoreactivity in the amygdala (central nucleus), suggesting increased neuronal excitability in this brain area after L-17 administration. Acute L-17 also dose-dependently inhibited of 5-HT neurons of the dorsal raphe nucleus (DRN). This inhibition was partially reversed by subsequent administration of WAY100135, suggesting the involvement of extracellular 5-HT. Based on in silico predictions, c-Fos immunohistochemistry, and in vivo electrophysiology, we suggest that L-17 is a potent 5-HT reuptake inhibitor and/or partial 5-HT1A receptor antagonist. Thus, L-17 might be a representative of a new class of antidepressant drugs. Since L-17 also possesses neuro- and cardio-protective properties, it can be useful in post-stroke and post-myocardial infarction (MI) depression. In general, combined in silico predictions and ex vivo neurochemical and in vivo electrophysiological assessment might be a useful strategy for early preclinical assessment of the affectivity and neural mechanism in action of the novel CNS drugs.


2021 ◽  
Author(s):  
Heming Chen

Abstract This describes the flow of in vivo electrophysiology recording during optogenetic manipulation via UCNPs.


2021 ◽  
Author(s):  
Andrea K Stacy ◽  
Nathan A Schneider ◽  
Noah K Gilman ◽  
Stephen D Van Hooser

Selectivity for direction of motion is a key feature of primary visual cortical neurons. Visual experience is required for direction selectivity in carnivore and primate visual cortex, but the circuit mechanisms of its formation remain incompletely understood. Here we examined how developing lateral geniculate nucleus (LGN) neurons may contribute to cortical direction selectivity. Using in vivo electrophysiology techniques, we examined LGN receptive field properties of visually naive female ferrets before and after exposure to 6 hours of motion stimuli in order to assess the effect of acute visual experience on LGN cell development. We found that acute experience with motion stimuli did not significantly affect the weak orientation or direction selectivity of LGN neurons. In addition, we found that neither latency nor sustainedness or transience of LGN neurons significantly changed with acute experience. These results suggest that the direction selectivity that emerges in cortex after acute experience is computed in cortex and cannot be explained by changes in LGN cells.


Author(s):  
Alexey Sarapultsev ◽  
Pavel Vassiliev ◽  
Daniil Grinchii ◽  
Ruslan Paliokha ◽  
Andrey Kochetkov ◽  
...  

L-17 is a thiadiazine derivative with putative anti-inflammatory, neuroprotective, and antidepressant-like properties. In this study, we applied combined in silico and in vivo electrophysiology techniques to reveal the potential mechanism of action of L-17. PASS 10.4 Professional Extended software suggested that L-17 might have pro-cognitive, antidepressant, and antipsychotic effects. Docking energy assessment with AutoDockVina predicted that the binding affinities of L-17 to the serotonin transporter (SERT) and serotonin receptors 3 and 1A (5-HT3 and 5-HT1A) are compatible to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and selective antagonists of 5-HT3 and 5-HT1A receptors, granisetron and WAY100135, respectively. However, while the binding mechanisms of L-17 to the SERT and 5-HT1A receptor were similar to fluoxetine and WAY100135, its interacting with 5-HT3 receptor might be substantially different from this of granisetron. Acute administration of L-17 led to dose-dependent inhibition of firing activity of 5-HT neurons of the dorsal raphe nucleus. This inhibition was partially reversed by subsequent administration of WAY100135. Based on both in silico and in vivo electrophysiology assessments, we suggest that L-17 is a potent 5-HT reuptake inhibitor and a putative partial agonist of 5-HT1A receptors. As such, L-17 in particular and thiadiazine derivatives, in general, might be a representative of a new class of antidepressant drugs. Since L-17 also possesses neuro- and cardioprotective properties, it can be useful in affective illness developing due to the general medical condition, such as post-stroke and post-myocardial infarction (MI) depression.


Author(s):  
Laura A. Alba ◽  
Elizabeth Baker ◽  
Katherine K. M. Stavropoulos

2020 ◽  
Vol 8 ◽  
Author(s):  
Hye Kyu Choi ◽  
Jin-Ho Lee ◽  
Taek Lee ◽  
Sang-Nam Lee ◽  
Jeong-Woo Choi

2020 ◽  
Vol 336 ◽  
pp. 108636 ◽  
Author(s):  
David Eriksson ◽  
Megan Schneck ◽  
Artur Schneider ◽  
Philippe Coulon ◽  
Ilka Diester

2020 ◽  
Vol 30 (8) ◽  
pp. 4662-4676
Author(s):  
Kevin J Monk ◽  
Simon Allard ◽  
Marshall G Hussain Shuler

Abstract The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce “reward timing activity” (i.e., spike modulation of various forms that relate the interval between the visual stimulus and expected reward). Local manipulations to V1 implicate it as a site of learning reward timing activity (as opposed to simply reporting timing information from another region via feedback input). However, the manner by which V1 then produces these representations is unknown. Here, we combine behavior, in vivo electrophysiology, and optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that inhibitory interneurons participate in reward timing, and that these representations are consistent with a theorized network architecture. Together, these results deepen our understanding of V1 reward timing and the manner by which it is produced.


2020 ◽  
Vol 19 (6) ◽  
pp. 679-686 ◽  
Author(s):  
Claudia Cea ◽  
George D. Spyropoulos ◽  
Patricia Jastrzebska-Perfect ◽  
José J. Ferrero ◽  
Jennifer N. Gelinas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document