gabaergic synapses
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 66)

H-INDEX

55
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Christopher Brian Currin ◽  
Joseph Valentino Raimondo

AbstractMany neurons in the mammalian central nervous system have complex dendritic arborisations and active dendritic conductances that enable these cells to perform sophisticated computations. How dendritically targeted inhibition affects local dendritic excitability is not fully understood. Here we use computational models of branched dendrites to investigate where GABAergic synapses should be placed to minimise dendritic excitability over time. To do so, we formulate a metric we term the “Inhibitory Level” (IL), which quantifies the effectiveness of synaptic inhibition for reducing the depolarising effect of nearby excitatory input. GABAergic synaptic inhibition is dependent on the reversal potential for GABAA receptors (EGABA), which is primarily set by the transmembrane chloride ion (Cl-) concentration gradient. We, therefore, investigated how variable EGABA and dynamic chloride affects dendritic inhibition. We found that the inhibitory effectiveness of dendritic GABAergic synapses accumulates at an encircled branch junction. The extent of inhibitory accumulation is dependent on the number of branches and location of synapses but is independent of EGABA. This accumulation occurs even for very distally placed inhibitory synapses when they are hyperpolarising – but not when they are shunting. When accounting for Cl- fluxes and dynamics in Cl- concentration, we observed that Cl- loading is detrimental to inhibitory effectiveness. This enabled us to determine the most inhibitory distribution of GABAergic synapses which is close to – but not at – a shared branch junction. This distribution balances a trade-off between a stronger combined inhibitory influence when synapses closely encircle a branch junction with the deleterious effects of increased Cl- loading that occurs when inhibitory synapses are co-located.


2021 ◽  
pp. 265-284
Author(s):  
Marco Sassoè-Pognetto ◽  
Annarita Patrizi
Keyword(s):  

Cell Reports ◽  
2021 ◽  
Vol 37 (12) ◽  
pp. 110142
Author(s):  
Joshua D. Garcia ◽  
Sara E. Gookin ◽  
Kevin C. Crosby ◽  
Samantha L. Schwartz ◽  
Erika Tiemeier ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Nathan Godfrey ◽  
Min Qiao ◽  
Stephanie L Borgland

Dopamine neurons in the ventral tegmental area (VTA) are strongly innervated by GABAergic neurons in the tail of the VTA (tVTA), also known as the rostralmedial tegmental nucleus (RMTg). Disinhibition of dopamine neurons through firing of the GABAergic neurons projecting from the lateral hypothalamus (LH) leads to reward seeking and consumption through dopamine release in the nucleus accumbens. VTA dopamine neurons respond to changes in motivational state, yet less is known of whether tVTA/RMTg GABAergic neurons or the LH GABAergic neurons that project to them are also affected by changes in motivational state, such as fasting. An acute 16 h overnight fast decreased the excitability of tVTA/RMTg GABAergic neurons of male and female mice. In addition, fasting decreased synaptic strength at LH GABA to tVTA/RMTg GABAergic synapses, indicated by reduced amplitude of optically evoked currents, decreased readily releasable pool (RRP) size and replenishment. Optical stimulation of LH GABA terminals suppressed evoked action potentials of tVTA/RMTg GABAergic neurons in unfasted mice, but this effect decreased following fasting in both males and females. Furthermore, during fasting, LH GABA inputs to tVTA/RMTg neurons maintained functional connectivity during depolarization, as depolarization block was reduced following fasting. Taken together, inhibitory synaptic transmission from LH GABA inputs onto tVTA/RMTg GABAergic neurons decreases following fasting, however ability to functionally inhibit tVTA/RMTg GABAergic neurons is preserved, allowing for possible disinhibition of dopamine neurons and subsequent foraging.


2021 ◽  
Vol 12 ◽  
Author(s):  
Madoka Iizumi ◽  
Akiko Oota-Ishigaki ◽  
Mariko Yamashita ◽  
Takashi Hayashi

AMPA receptors are responsible for fast excitatory synaptic transmission in the mammalian brain. Post-translational protein S-palmitoylation of AMPA receptor subunits GluA1-4 reversibly regulates synaptic AMPA receptor expression, resulting in long-lasting changes in excitatory synaptic strengths. Our previous studies have shown that GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice exhibited hyperexcitability in the cerebrum and elevated seizure susceptibility without affecting brain structure or basal synaptic transmission. Moreover, some inhibitory GABAergic synapses-targeting anticonvulsants, such as valproic acid, phenobarbital, and diazepam, had less effect on these AMPA receptor palmitoylation-deficient mutant mice. This work explores pharmacological effect of voltage-gated ion channel-targeted anticonvulsants, phenytoin and trimethadione, on GluA1C811S mice. Similar to GABAergic synapses-targeting anticonvulsants, anticonvulsive effects were also reduced for both sodium channel- and calcium channel-blocking anticonvulsants, which suppress excess excitation. These data strongly suggest that the GluA1C811S mice generally underlie the excessive excitability in response to seizure-inducing stimulation. AMPA receptor palmitoylation site could be a novel target to develop unprecedented type of anticonvulsants and GluA1C811S mice are suitable as a model animal for broadly evaluating pharmacological effectiveness of antiepileptic drugs.


2021 ◽  
Vol 19 ◽  
Author(s):  
Jimcy Platholi ◽  
Hugh C. Hemmings Jr

: General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on specific anesthetic agent and the vulnerability of population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1862
Author(s):  
Luisa Strackeljan ◽  
Ewa Baczynska ◽  
Carla Cangalaya ◽  
David Baidoe-Ansah ◽  
Jakub Wlodarczyk ◽  
...  

The extracellular matrix (ECM) plays a key role in synaptogenesis and the regulation of synaptic functions in the central nervous system. Recent studies revealed that in addition to dopaminergic and serotoninergic neuromodulatory systems, microglia also contribute to the regulation of ECM remodeling. In the present work, we investigated the physiological role of microglia in the remodeling of perineuronal nets (PNNs), predominantly associated with parvalbumin-immunopositive (PV+) interneurons, and the perisynaptic ECM around pyramidal neurons in the hippocampus. Adult mice were treated with PLX3397 (pexidartinib), as the inhibitor of colony-stimulating factor 1 receptor (CSF1-R), to deplete microglia. Then, confocal analysis of the ECM and synapses was performed. Although the elimination of microglia did not alter the overall number or intensity of PNNs in the CA1 region of the hippocampus, it decreased the size of PNN holes and elevated the expression of the surrounding ECM. In the neuropil area in the CA1 str. radiatum, the depletion of microglia increased the expression of perisynaptic ECM proteoglycan brevican, which was accompanied by the elevated expression of presynaptic marker vGluT1 and the increased density of dendritic spines. Thus, microglia regulate the homeostasis of pre- and postsynaptic excitatory terminals and the surrounding perisynaptic ECM as well as the fine structure of PNNs enveloping perisomatic—predominantly GABAergic—synapses.


Sign in / Sign up

Export Citation Format

Share Document