Concentrating Solar Power Technologies: Solar Field Types and Additional Systems

Author(s):  
Pere Mir-Artigues ◽  
Pablo del Río ◽  
Natàlia Caldés
2018 ◽  
Vol 10 (11) ◽  
pp. 3937 ◽  
Author(s):  
Sahar Bouaddi ◽  
Aránzazu Fernández-García ◽  
Chris Sansom ◽  
Jon Sarasua ◽  
Fabian Wolfertstetter ◽  
...  

The severe soiling of reflectors deployed in arid and semi arid locations decreases their reflectance and drives down the yield of the concentrating solar power (CSP) plants. To alleviate this issue, various sets of methods are available. The operation and maintenance (O&M) staff should opt for sustainable cleaning methods that are safe and environmentally friendly. To restore high reflectance, the cleaning vehicles of CSP plants must adapt to the constraints of each technology and to the layout of reflectors in the solar field. Water based methods are currently the most commonly used in CSP plants but they are not sustainable due to water scarcity and high soiling rates. The recovery and reuse of washing water can compensate for these methods and make them a more reasonable option for mediterranean and desert environments. Dry methods, on the other hand, are gaining more attraction as they are more suitable for desert regions. Some of these methods rely on ultrasonic wave or vibration for detaching the dust bonding from the reflectors surface, while other methods, known as preventive methods, focus on reducing the soiling by modifying the reflectors surface and incorporating self cleaning features using special coatings. Since the CSP plants operators aim to achieve the highest profit by minimizing the cost of cleaning while maintaining a high reflectance, optimizing the cleaning parameters and strategies is of great interest. This work presents the conventional water-based methods that are currently used in CSP plants in addition to sustainable alternative methods for dust removal and soiling prevention. Also, the cleaning effectiveness, the environmental impacts and the economic aspects of each technology are discussed.


Author(s):  
Michael J. Wagner ◽  
Charles Kutscher

This paper examines the sensitivity of Rankine cycle plant performance to dry cooling and hybrid (parallel) wet/dry cooling combinations with the traditional wet-cooled model as a baseline. Plants with a lower temperature thermal resource are more sensitive to fluctuations in cooling conditions, and so the lower temperature parabolic trough plant is analyzed to assess the maximum impact of alternative cooling configurations. While low water-use heat rejection designs are applicable to any technology that utilizes a Rankine steam cycle for power generation, they are of special interest to concentrating solar power (CSP) technologies that are located in arid regions with limited water availability. System performance is evaluated using hourly simulations over the course of a year at Daggett, CA. The scope of the analysis in this paper is limited to the power block and the heat rejection system, excluding the solar field and thermal storage. As such, water used in mirror washing, maintenance, etc., is not included. Thermal energy produced by the solar field is modeled using NREL’s Solar Advisor Model (SAM).


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Massimo Moser ◽  
Franz Trieb ◽  
Jürgen Kern ◽  
Houda Allal ◽  
Nicolas Cottret ◽  
...  

Within the MED-CSD project, feasibility studies of integrated hybrid concentrating solar power (CSP) and seawater desalination (DES) plants were carried out in selected locations in Morocco, Italy, Cyprus, Egypt and Gaza/West Bank. After a review on CSP and desalination technologies, ten typical sites within the five partner countries have been selected. For each location, a CSP-DES plant was modeled. The model bases on hourly time series of solar irradiance, ambient temperature, as well as wind speed and includes local seasonal and hourly load curves for power and water. Surplus thermal energy from the solar field is fed into the energy storage, so that operation is possible at night and during cloud transients; gaps between demand and solar power production are covered by cofiring with fossil fuel. Different plant components (solar field collectors and desalination technologies) have been compared. A techno-economic model is applied in order to analyze the economic feasibility and the required financial framework conditions of the projects. Furthermore, an analysis of the market potential of concentrating solar power for sea water desalination in the Mediterranean Region and socio-economic and environmental impact analyses were implemented.


Author(s):  
Mohammad Abutayeh ◽  
Anas Alazzam ◽  
Bashar El-Khasawneh

A scheme to streamline the electric power generation profile of concentrating solar power plants of the parabolic trough collector type is suggested. The scheme seeks to even out heat transfer rates from the solar field to the power block by splitting the typical heat transfer fluid loop into two loops using an extra vessel and an extra pump. In the first loop, cold heat transfer fluid is pumped by the cold pump from the cold vessel to the solar field to collect heat before accumulating in the newly introduced hot vessel. In the second loop, hot heat transfer fluid is pumped by the hot pump from the hot vessel to a heat exchanger train to supply the power block with its heat load before accumulating in the cold vessel. The new scheme moderately decouples heat supply from heat sink allowing for more control of heat delivery rates thereby evening out power generation.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Mohammad Abutayeh ◽  
Kwangkook Jeong ◽  
Anas Alazzam ◽  
Bashar El-Khasawneh

A scheme to streamline the electric power generation profile of concentrating solar power (CSP) plants of the parabolic trough collector (PTC) type is suggested. The scheme seeks to even out heat transfer rates from the solar field (SF) to the power block (PB) by splitting the typical heat transfer fluid (HTF) loop into two loops using an extra vessel and an extra pump. In the first loop, cold HTF is pumped by the cold pump from the cold vessel to the SF to collect heat before accumulating in the newly introduced hot vessel. In the second loop, hot HTF is pumped by the hot pump from the hot vessel to a heat exchanger train (HXT) to supply the PB with its heat load before accumulating in the cold vessel. The new scheme moderately decouples heat supply from heat sink allowing for more control of heat delivery rates thereby evening out power generation.


2010 ◽  
Vol 2009 (4) ◽  
pp. 314-318 ◽  
Author(s):  
Chao Chen ◽  
Zhigang Nie ◽  
Xiaotao Na

Sign in / Sign up

Export Citation Format

Share Document