concentrating solar power
Recently Published Documents


TOTAL DOCUMENTS

776
(FIVE YEARS 271)

H-INDEX

53
(FIVE YEARS 11)

2022 ◽  
Vol 305 ◽  
pp. 117804
Author(s):  
Shitong Sun ◽  
S. Mahdi Kazemi-Razi ◽  
Lisa G. Kaigutha ◽  
Mousa Marzband ◽  
Hamed Nafisi ◽  
...  

Solar Energy ◽  
2022 ◽  
Vol 231 ◽  
pp. 464-472
Author(s):  
Matias Castro-Quijada ◽  
Daniel Faundez ◽  
Rene Rojas ◽  
Alvaro Videla

2021 ◽  
Vol 9 ◽  
Author(s):  
Brandon T. Gorman ◽  
Mariana Lanzarini-Lopes ◽  
Nathan G. Johnson ◽  
James E. Miller ◽  
Ellen B. Stechel

We present results for a one-dimensional quasi-steady-state thermodynamic model developed for a 111.7 MWe concentrating solar power (CSP) system using a redox-active metal oxide as the heat storage media and heat transfer agent integrated with a combined cycle air Brayton power block. In the energy charging and discharging processes, the metal oxide CaAl0.2Mn0.8O2.9-δ (CAM28) undergoes a reversible, high temperature redox cycle including an endothermic oxygen-releasing reaction and exothermic oxygen-incorporation reaction. Concentrated solar radiation heats the redox-active oxide particles under partial vacuum to drive the reduction extent deeper for increased energy density at a fixed temperature, thereby increasing storage capacity while limiting the required on sun temperature. Direct counter-current contact of the reduced particles with compressed air from the Brayton compressor releases stored chemical and sensible energy, heating the air to 1,200°C at the turbine inlet while cooling and reoxidizing the particles. The cool oxidized particles recirculate through the solar receiver subsystem for another cycle of heating and reduction (oxygen release). We applied the techno-economic model to 1) size components, 2) examine intraday operation with varying solar insolation, 3) estimate annual performance characteristics over a simulated year, 4) estimate the levelized cost of electricity (LCOE), and 5) perform sensitivity analyses to evaluate factors that affect performance and cost. Simulations use hourly solar radiation data from Barstow, California to assess the performance of a 111.7 MWe system with solar multiples (SMs) varying from 1.2 to 2.4 and storage capacities of 6–14 h. The baseline system with 6 h storage and SM of 1.8 has a capacity factor of 54.2%, an increase from 32.3% capacity factor with no storage, and an average annual energy efficiency of 20.6%. Calculations show a system with an output of 710 GWhe net electricity per year, 12 h storage, and SM of 2.4 to have an installed cost of $329 million, and an LCOE of 5.98 ¢/kWhe. This value meets the U.S. Department of Energy’s SunShot 2020 target of 6.0 ¢/kWhe (U. S Department of Energy, 2012), but falls just shy of the 5.0 ¢/kWhe 2030 CSP target for dispatchable electricity (U. S Department of Energy, 2017). The cost and performance results are minimally sensitive to most design parameters. However, a one-point change in the weighted annual cost of capital from 8 to 7% (better understood as a 12.5% change) translates directly to an 11% decrease (0.66 ¢/kWhe) in the LCOE.


2021 ◽  
Vol 13 (22) ◽  
pp. 12428
Author(s):  
Brian T. White ◽  
Michael J. Wagner ◽  
Ty Neises ◽  
Cory Stansbury ◽  
Ben Lindley

Solar power has innate issues with weather, grid demand and time of day, which can be mitigated through use of thermal energy storage for concentrating solar power (CSP). Nuclear reactors, including lead-cooled fast reactors (LFRs), can adjust power output according to demand; but with high fixed costs and low operating costs, there may not be sufficient economic incentive to make this worthwhile. We investigate potential synergies through coupling CSP and LFR together in a single supercritical CO2 Brayton cycle and/or using the same thermal energy storage. Combining these cycles allows for the LFR to thermally charge the salt storage in the CSP cycle during low-demand periods to be dispatched when grid demand increases. The LFR/CSP coupling into one cycle is modeled to find the preferred location of the LFR heat exchanger, CSP heat exchanger, sCO2-to-salt heat exchanger (C2S), turbines, and recuperators within the supercritical CO2 Brayton cycle. Three cycle configurations have been studied: two-cycle configuration, which uses CSP and LFR heat for dedicated turbocompressors, has the highest efficiencies but with less component synergies; a combined cycle with CSP and LFR heat sources in parallel is the simplest with the lowest efficiencies; and a combined cycle with separate high-temperature recuperators for both the CSP and LFR is a compromise between efficiency and component synergies. Additionally, four thermal energy storage charging techniques are studied: the turbine positioned before C2S, requiring a high LFR outlet temperature for viability; the turbine after the C2S, reducing turbine inlet temperature and therefore power; the turbine parallel to the C2S producing moderate efficiency; and a dedicated circulator loop. While all configurations have pros and cons, use of a single cycle offers component synergies with limited efficiency penalty. Using a turbine in parallel with the C2S heat exchanger is feasible but results in a low charging efficiency, while a dedicated circulator loop offers flexibility and near-perfect heat storage efficiency but increasing cost with additional cycle components.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7486
Author(s):  
Alberto Giaconia ◽  
Anna Chiara Tizzoni ◽  
Salvatore Sau ◽  
Natale Corsaro ◽  
Emiliana Mansi ◽  
...  

Different fluid compositions have been considered as heat transfer fluids (HTF) for concentrating solar power (CSP) applications. In linear focusing CSP systems synthetic oils are prevalently employed; more recently, the use of molten salt mixtures in linear focusing CSP systems has been proposed too. This paper presents a comparative assessment of thermal oils and five four nitrate/nitrite mixtures, among the ones mostly employed or proposed so far for CSP applications. The typical medium-size CSP plant (50 MWe) operating with synthetic oil as HTF and the “solar salt” as TES was considered as a benchmark. In the first part of the paper, physical properties and operation ranges of different HTFs are reviewed; corrosion and environmental issues are highlighted too. Besides an extensive review of HTFs based on data available from the open literature, the authors report their own obtained experimental data needed to thoroughly compare different solutions. In the second part of the paper, the impact of the different HTF options on the design and operation of CSP plants are analyzed from techno-economic perspectives.


Sign in / Sign up

Export Citation Format

Share Document