Exploring Internal Representations of Deep Neural Networks

Author(s):  
Jérémie Despraz ◽  
Stéphane Gomez ◽  
Héctor F. Satizábal ◽  
Carlos Andrés Peña-Reyes
Author(s):  
Xiayu Chen ◽  
Ming Zhou ◽  
Zhengxin Gong ◽  
Wei Xu ◽  
Xingyu Liu ◽  
...  

Deep neural networks (DNNs) have attained human-level performance on dozens of challenging tasks via an end-to-end deep learning strategy. Deep learning allows data representations that have multiple levels of abstraction; however, it does not explicitly provide any insights into the internal operations of DNNs. Deep learning's success is appealing to neuroscientists not only as a method for applying DNNs to model biological neural systems but also as a means of adopting concepts and methods from cognitive neuroscience to understand the internal representations of DNNs. Although general deep learning frameworks, such as PyTorch and TensorFlow, could be used to allow such cross-disciplinary investigations, the use of these frameworks typically requires high-level programming expertise and comprehensive mathematical knowledge. A toolbox specifically designed as a mechanism for cognitive neuroscientists to map both DNNs and brains is urgently needed. Here, we present DNNBrain, a Python-based toolbox designed for exploring the internal representations of DNNs as well as brains. Through the integration of DNN software packages and well-established brain imaging tools, DNNBrain provides application programming and command line interfaces for a variety of research scenarios. These include extracting DNN activation, probing and visualizing DNN representations, and mapping DNN representations onto the brain. We expect that our toolbox will accelerate scientific research by both applying DNNs to model biological neural systems and utilizing paradigms of cognitive neuroscience to unveil the black box of DNNs.


Author(s):  
Xiayu Chen ◽  
Ming Zhou ◽  
Zhengxin Gong ◽  
Wei Xu ◽  
Xingyu Liu ◽  
...  

ABSTRACTDeep neural networks (DNNs) have attained human-level performance on dozens of challenging tasks through an end-to-end deep learning strategy. Deep learning gives rise to data representations with multiple levels of abstraction; however, it does not explicitly provide any insights into the internal operations of DNNs. Its success appeals to neuroscientists not only to apply DNNs to model biological neural systems, but also to adopt concepts and methods from cognitive neuroscience to understand the internal representations of DNNs. Although general deep learning frameworks such as PyTorch and TensorFlow could be used to allow such cross-disciplinary studies, the use of these frameworks typically requires high-level programming expertise and comprehensive mathematical knowledge. A toolbox specifically designed for cognitive neuroscientists to map DNNs and brains is urgently needed. Here, we present DNNBrain, a Python-based toolbox designed for exploring internal representations in both DNNs and the brain. By integrating DNN software packages and well-established brain imaging tools, DNNBrain provides application programming and command line interfaces for a variety of research scenarios, such as extracting DNN activation, probing DNN representations, mapping DNN representations onto the brain, and visualizing DNN representations. We expect that our toolbox will accelerate scientific research in applying DNNs to model biological neural systems and utilizing paradigms of cognitive neuroscience to unveil the black box of DNNs.


Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Author(s):  
Daniel Povey ◽  
Gaofeng Cheng ◽  
Yiming Wang ◽  
Ke Li ◽  
Hainan Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document