Solving the Service Technician Routing and Scheduling Problem with Time Windows

Author(s):  
Amy Khalfay ◽  
Alan Crispin ◽  
Keeley Crockett
Author(s):  
Hsiao-Fan Wang

One key role along green supply chain is the distribution center which has the responsibility to deliver the commodities to the customers and collect the end-used products back to the center for further process. This activity requires a distributor to determine how many vehicles with what sizes along which routes to deliver commodities so that the demands from all customers will be satisfied within customers’ available time with minimum operation cost. This problem can be classified into a vehicle routing and scheduling problem with multiple vehicle types and service time windows. In practice, the complexity of the problem requires a structural model to facilitate general analysis and applications. However, also because of its complexity, an efficient solution procedure is equivalently important. Therefore, in this study, we have first developed a model for a distribution center to support the decisions on vehicle types and numbers; as well as the routing route and schedule so that the overall operation cost will be minimized. Since this model of vehicle routing and scheduling problem with multiple vehicle types and multiple time windows (VRSP-MVMT) is a nondeterministic polynomial time (NP)-hard problem, we have developed a genetic algorithm (GA) for efficient solution. The efficiency and accuracy of the algorithm will be evaluated and illustrated with numerical examples.


2015 ◽  
Vol 45 ◽  
pp. 350-360 ◽  
Author(s):  
Jesica de Armas ◽  
Eduardo Lalla-Ruiz ◽  
Christopher Expósito-Izquierdo ◽  
Dario Landa-Silva ◽  
Belén Melián-Batista

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Krystel K. Castillo-Villar ◽  
Rosa G. González-Ramírez ◽  
Pablo Miranda González ◽  
Neale R. Smith

This paper develops a heuristic algorithm for solving a routing and scheduling problem for tramp shipping with discretized time windows. The problem consists of determining the set of cargoes that should be served by each ship, the arrival, departure, and waiting times at each port, while minimizing total costs. The heuristic proposed is based on a variable neighborhood search, considering a number of neighborhood structures to find a solution to the problem. We present computational results, and, for comparison purposes, we consider instances that can be solved directly by CPLEX to test the performance of the proposed heuristic. The heuristics achieves good solution quality with reasonable computational times. Our computational results are encouraging and establish that our heuristic can be utilized to solve large real-size instances.


Sign in / Sign up

Export Citation Format

Share Document