scholarly journals Two Versions of the Spectral Nonlinear Conjugate Gradient Method

2018 ◽  
Vol 29 (1) ◽  
pp. 133
Author(s):  
Basim A. Hassan ◽  
Haneen A. Alashoor

The nonlinear conjugate gradient method is widely used to solve unconstrained optimization problems. In this paper the development of different versions of nonlinear conjugate gradient methods with global convergence properties proved. Numerical results indicated that the proposed method is very efficient.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shengwei Yao ◽  
Bin Qin

The conjugate gradient method is an efficient method for solving large-scale nonlinear optimization problems. In this paper, we propose a nonlinear conjugate gradient method which can be considered as a hybrid of DL and WYL conjugate gradient methods. The given method possesses the sufficient descent condition under the Wolfe-Powell line search and is globally convergent for general functions. Our numerical results show that the proposed method is very robust and efficient for the test problems.


2018 ◽  
Vol 28 (3) ◽  
pp. 193 ◽  
Author(s):  
Basim A. Hassan

The conjugate gradient method an efficient technique for solving the unconstrained optimization problem. In this paper, we propose a new hybrid nonlinear conjugate gradient methods, which have the descent at every iteration and globally convergence properties under certain conditions. The numerical results show that new hybrid method are efficient for the given test problems.


Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 133 ◽  
Author(s):  
Xiuyun Zheng ◽  
Jiarong Shi

In this paper, a modification to the Polak–Ribiére–Polyak (PRP) nonlinear conjugate gradient method is presented. The proposed method always generates a sufficient descent direction independent of the accuracy of the line search and the convexity of the objective function. Under appropriate conditions, the modified method is proved to possess global convergence under the Wolfe or Armijo-type line search. Moreover, the proposed methodology is adopted in the Hestenes–Stiefel (HS) and Liu–Storey (LS) methods. Extensive preliminary numerical experiments are used to illustrate the efficiency of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-22
Author(s):  
Liu Jin-kui ◽  
Zou Li-min ◽  
Song Xiao-qian

A modified PRP nonlinear conjugate gradient method to solve unconstrained optimization problems is proposed. The important property of the proposed method is that the sufficient descent property is guaranteed independent of any line search. By the use of the Wolfe line search, the global convergence of the proposed method is established for nonconvex minimization. Numerical results show that the proposed method is effective and promising by comparing with the VPRP, CG-DESCENT, and DL+methods.


2007 ◽  
Vol 2007 ◽  
pp. 1-19 ◽  
Author(s):  
Shang Shang ◽  
Jing Bai ◽  
Xiaolei Song ◽  
Hongkai Wang ◽  
Jaclyn Lau

Conjugate gradient method is verified to be efficient for nonlinear optimization problems of large-dimension data. In this paper, a penalized linear and nonlinear combined conjugate gradient method for the reconstruction of fluorescence molecular tomography (FMT) is presented. The algorithm combines the linear conjugate gradient method and the nonlinear conjugate gradient method together based on a restart strategy, in order to take advantage of the two kinds of conjugate gradient methods and compensate for the disadvantages. A quadratic penalty method is adopted to gain a nonnegative constraint and reduce the illposedness of the problem. Simulation studies show that the presented algorithm is accurate, stable, and fast. It has a better performance than the conventional conjugate gradient-based reconstruction algorithms. It offers an effective approach to reconstruct fluorochrome information for FMT.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shengwei Yao ◽  
Xiwen Lu ◽  
Bin Qin

The conjugate gradient (CG) method has played a special role in solving large-scale nonlinear optimization problems due to the simplicity of their very low memory requirements. In this paper, we propose a new conjugacy condition which is similar to Dai-Liao (2001). Based on this condition, the related nonlinear conjugate gradient method is given. With some mild conditions, the given method is globally convergent under the strong Wolfe-Powell line search for general functions. The numerical experiments show that the proposed method is very robust and efficient.


Sign in / Sign up

Export Citation Format

Share Document