Generalized Drazin Inverse and Commuting Riesz Perturbations

Author(s):  
Mourad Oudghiri ◽  
Khalid Souilah
2012 ◽  
Vol 436 (3) ◽  
pp. 742-746 ◽  
Author(s):  
Guifen Zhuang ◽  
Jianlong Chen ◽  
Jian Cui

Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 105 ◽  
Author(s):  
Yonghui Qin ◽  
Xiaoji Liu ◽  
Julio Benítez

Based on the conditions a b 2 = 0 and b π ( a b ) ∈ A d , we derive that ( a b ) n , ( b a ) n , and a b + b a are all generalized Drazin invertible in a Banach algebra A , where n ∈ N and a and b are elements of A . By using these results, some results on the symmetry representations for the generalized Drazin inverse of a b + b a are given. We also consider that additive properties for the generalized Drazin inverse of the sum a + b .


2016 ◽  
Vol 23 (4) ◽  
pp. 587-594 ◽  
Author(s):  
Dijana Mosić ◽  
Dragan S. Djordjević

AbstractIn this paper, we introduce and investigate the weighted generalized Drazin inverse in rings. We also introduce and investigate the weighted EP elements


2011 ◽  
Vol 88-89 ◽  
pp. 509-514
Author(s):  
Li Guo ◽  
Yu Jing Liu

To study the properties of the generalized Drazin inverse in a Banach algebra, an explicit representation of the generalized Drazin inverse under the some conditions. Thus some results are generalized.


2013 ◽  
Vol 846-847 ◽  
pp. 1286-1290
Author(s):  
Shi Qiang Wang ◽  
Li Guo ◽  
Lei Zhang

In this paper, we investigate additive properties for the generalized Drazin inverse of bounded linear operators on Banach space . We give explicit representation of the generalized Drazin inverse in terms of under some conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Xiaoji Liu ◽  
Dengping Tu ◽  
Yaoming Yu

We investigate the generalized Drazin inverse ofA−CBover Banach spaces stemmed from the Drazin inverse of a modified matrix and present its expressions under some conditions.


Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1973-1980 ◽  
Author(s):  
Qingping Zeng ◽  
Zhenying Wu ◽  
Yongxian Wen

In this paper, Cline?s formula for the well-known generalized inverses such as Drazin inverse, pseudo Drazin inverse and generalized Drazin inverse is extended to the case when ( acd = dbd dba = aca. Also, applications are given to some interesting Banach space operator properties like algebraic, meromorphic, polaroidness and B-Fredholmness.


Filomat ◽  
2020 ◽  
Vol 34 (11) ◽  
pp. 3845-3854
Author(s):  
Huanyin Chen ◽  
Marjan Sheibani

We explore the generalized Drazin inverse in a Banach algebra. Let A be a Banach algebra, and let a,b ? Ad. If ab = ?a?bab? for a nonzero complex number ?, then a + b ? Ad. The explicit representation of (a + b)d is presented. As applications of our results, we present new representations for the generalized Drazin inverse of a block matrix in a Banach algebra. The main results of Liu and Qin [Representations for the generalized Drazin inverse of the sum in a Banach algebra and its application for some operator matrices, Sci. World J., 2015, 156934.8] are extended.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 622 ◽  
Author(s):  
Dilan Ahmed ◽  
Mudhafar Hama ◽  
Karwan Hama Faraj Jwamer ◽  
Stanford Shateyi

One of the most important generalized inverses is the Drazin inverse, which is defined for square matrices having an index. The objective of this work is to investigate and present a computational tool in the form of an iterative method for computing this task. This scheme reaches the seventh rate of convergence as long as a suitable initial matrix is chosen and by employing only five matrix products per cycle. After some analytical discussions, several tests are provided to show the efficiency of the presented formulation.


Sign in / Sign up

Export Citation Format

Share Document